emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1376
  • Accuracy: 0.6062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 1.3456 0.4813
No log 2.0 40 1.3147 0.5188
No log 3.0 60 1.2345 0.5563
No log 4.0 80 1.2281 0.5625
No log 5.0 100 1.1851 0.5687
No log 6.0 120 1.1911 0.5563
No log 7.0 140 1.1834 0.5813
No log 8.0 160 1.1682 0.5875
No log 9.0 180 1.2359 0.55
No log 10.0 200 1.1850 0.5563
No log 11.0 220 1.1877 0.5687
No log 12.0 240 1.1546 0.5687
No log 13.0 260 1.1694 0.5813
No log 14.0 280 1.2401 0.5875
No log 15.0 300 1.1899 0.575

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
26
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for JohnJumon/emotion_recognition

Finetuned
(2105)
this model

Evaluation results