jk-req

This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.9818 0.9524 5 1.5863
1.4742 1.9048 10 1.2134
1.1007 2.8571 15 0.9242
0.6604 4.0 21 0.6552
0.5768 4.9524 26 0.5561
0.4812 5.9048 31 0.5101
0.4361 6.8571 36 0.4809
0.3387 8.0 42 0.4651
0.3938 8.9524 47 0.4607
0.3506 9.5238 50 0.4598

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for JohanKlingberg/jk-req