JerryYanJiang's picture
update model card README.md
eb1021a
---
license: mit
base_model: digitalepidemiologylab/covid-twitter-bert-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: covid-twitter-bert-v2_1_4_2e-05_0.01
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# covid-twitter-bert-v2_1_4_2e-05_0.01
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1675
- Accuracy: 0.9659
- F1: 0.9117
- Precision: 0.8761
- Recall: 0.9502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2014 | 1.0 | 1629 | 0.1675 | 0.9659 | 0.9117 | 0.8761 | 0.9502 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3