zephyr-7b-dpo-full / README.md
Jerry46's picture
Model save
917652e verified
|
raw
history blame
2.24 kB
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-dpo-full
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1891
- Rewards/chosen: 0.2333
- Rewards/rejected: -3.7392
- Rewards/accuracies: 0.7579
- Rewards/margins: 3.9725
- Logps/rejected: -349.7088
- Logps/chosen: -352.8180
- Logits/rejected: -0.9260
- Logits/chosen: -0.9366
- Use Label: 3014.7302
- Pred Label: 5005.2700
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Use Label | Pred Label |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:---------:|:----------:|
| 0.1714 | 1.0 | 1910 | 0.1891 | 0.2333 | -3.7392 | 0.7579 | 3.9725 | -349.7088 | -352.8180 | -0.9260 | -0.9366 | 2959.7302 | 4808.2700 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1