Jeremiah Zhou
update model card README.md
e8c9195
|
raw
history blame
1.7 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-sst2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.926605504587156

bert-base-uncased-sst2

This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2764
  • Accuracy: 0.9266

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1668 1.0 2105 0.2513 0.9174
0.1119 2.0 4210 0.2478 0.9323
0.0699 3.0 6315 0.2764 0.9266

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1