metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- wikitext
metrics:
- accuracy
model-index:
- name: mlm
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: wikitext wikitext-2-raw-v1
type: wikitext
config: wikitext-2-raw-v1
split: validation
args: wikitext-2-raw-v1
metrics:
- name: Accuracy
type: accuracy
value: 0.7255275697753574
mlm
This model is a fine-tuned version of roberta-base on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2799
- Accuracy: 0.7255
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3784 | 1.0 | 150 | 1.2822 | 0.7290 |
1.3804 | 2.0 | 300 | 1.2755 | 0.7273 |
1.3586 | 3.0 | 450 | 1.2628 | 0.7288 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3