JasHugF's picture
End of training
bf32555 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-tel-tam
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Speech Commands
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9772727272727273

whisper-tiny-tel-tam

This model is a fine-tuned version of openai/whisper-tiny on the Speech Commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1934
  • Accuracy: 0.9773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7009 1.0 175 0.9922 0.5227
0.024 2.0 350 0.2727 0.9091
0.4103 3.0 525 0.0223 1.0
0.0008 4.0 700 0.1908 0.9773
0.0005 5.0 875 0.1802 0.9773
0.0005 6.0 1050 0.1826 0.9773
0.0003 7.0 1225 0.1868 0.9773
0.0002 8.0 1400 0.1904 0.9773
0.0003 9.0 1575 0.1925 0.9773
0.0002 10.0 1750 0.1934 0.9773

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0