layoutlm-funsd-tf / README.md
Jackie's picture
Upload TFLayoutLMForTokenClassification
2e27f1a
---
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2477
- Validation Loss: 0.7106
- Train Overall Precision: 0.7360
- Train Overall Recall: 0.7918
- Train Overall F1: 0.7629
- Train Overall Accuracy: 0.7983
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7300 | 1.4338 | 0.1989 | 0.2313 | 0.2139 | 0.5265 | 0 |
| 1.1984 | 0.8999 | 0.5775 | 0.5795 | 0.5785 | 0.7162 | 1 |
| 0.7785 | 0.7393 | 0.6713 | 0.7040 | 0.6872 | 0.7634 | 2 |
| 0.5666 | 0.6416 | 0.7113 | 0.7617 | 0.7356 | 0.7961 | 3 |
| 0.4447 | 0.6454 | 0.7165 | 0.7737 | 0.7440 | 0.8003 | 4 |
| 0.3647 | 0.6500 | 0.7353 | 0.7832 | 0.7585 | 0.8091 | 5 |
| 0.3044 | 0.6587 | 0.7266 | 0.8053 | 0.7639 | 0.8119 | 6 |
| 0.2477 | 0.7106 | 0.7360 | 0.7918 | 0.7629 | 0.7983 | 7 |
### Framework versions
- Transformers 4.23.1
- TensorFlow 2.9.2
- Datasets 2.6.0
- Tokenizers 0.13.1