metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
results: []
lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.8649
- Answer: {'precision': 0.8747072599531616, 'recall': 0.9143206854345165, 'f1': 0.8940754039497306, 'number': 817}
- Header: {'precision': 0.5859375, 'recall': 0.6302521008403361, 'f1': 0.6072874493927125, 'number': 119}
- Question: {'precision': 0.9066543438077634, 'recall': 0.9108635097493036, 'f1': 0.9087540528022232, 'number': 1077}
- Overall Precision: 0.8735
- Overall Recall: 0.8957
- Overall F1: 0.8845
- Overall Accuracy: 0.8017
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.4135 | 10.53 | 200 | 1.0232 | {'precision': 0.8317757009345794, 'recall': 0.8714810281517748, 'f1': 0.8511655708308428, 'number': 817} | {'precision': 0.5126050420168067, 'recall': 0.5126050420168067, 'f1': 0.5126050420168067, 'number': 119} | {'precision': 0.8781362007168458, 'recall': 0.9099350046425255, 'f1': 0.8937528499772002, 'number': 1077} | 0.8384 | 0.8708 | 0.8543 | 0.7797 |
0.0419 | 21.05 | 400 | 1.2118 | {'precision': 0.8427745664739884, 'recall': 0.8922888616891065, 'f1': 0.8668252080856123, 'number': 817} | {'precision': 0.5267857142857143, 'recall': 0.4957983193277311, 'f1': 0.5108225108225107, 'number': 119} | {'precision': 0.8787330316742081, 'recall': 0.9015784586815228, 'f1': 0.8900091659028414, 'number': 1077} | 0.8449 | 0.8738 | 0.8591 | 0.7884 |
0.0118 | 31.58 | 600 | 1.5526 | {'precision': 0.8194748358862144, 'recall': 0.9167686658506732, 'f1': 0.8653957250144425, 'number': 817} | {'precision': 0.6161616161616161, 'recall': 0.5126050420168067, 'f1': 0.5596330275229358, 'number': 119} | {'precision': 0.8935574229691877, 'recall': 0.8885793871866295, 'f1': 0.8910614525139665, 'number': 1077} | 0.8479 | 0.8778 | 0.8626 | 0.7864 |
0.0062 | 42.11 | 800 | 1.6956 | {'precision': 0.8351893095768375, 'recall': 0.9179926560587516, 'f1': 0.8746355685131196, 'number': 817} | {'precision': 0.5275590551181102, 'recall': 0.5630252100840336, 'f1': 0.5447154471544715, 'number': 119} | {'precision': 0.916988416988417, 'recall': 0.8820798514391829, 'f1': 0.8991954566966399, 'number': 1077} | 0.8574 | 0.8778 | 0.8675 | 0.7970 |
0.0034 | 52.63 | 1000 | 1.6288 | {'precision': 0.8627450980392157, 'recall': 0.9155446756425949, 'f1': 0.8883610451306414, 'number': 817} | {'precision': 0.5663716814159292, 'recall': 0.5378151260504201, 'f1': 0.5517241379310345, 'number': 119} | {'precision': 0.8978840846366145, 'recall': 0.9062209842154132, 'f1': 0.9020332717190388, 'number': 1077} | 0.8650 | 0.8882 | 0.8765 | 0.8003 |
0.0021 | 63.16 | 1200 | 1.5524 | {'precision': 0.8739693757361602, 'recall': 0.9082007343941249, 'f1': 0.8907563025210083, 'number': 817} | {'precision': 0.5537190082644629, 'recall': 0.5630252100840336, 'f1': 0.5583333333333335, 'number': 119} | {'precision': 0.8787346221441125, 'recall': 0.9285051067780873, 'f1': 0.9029345372460497, 'number': 1077} | 0.8582 | 0.8987 | 0.8779 | 0.8139 |
0.0014 | 73.68 | 1400 | 1.6580 | {'precision': 0.8801897983392646, 'recall': 0.9082007343941249, 'f1': 0.8939759036144578, 'number': 817} | {'precision': 0.5537190082644629, 'recall': 0.5630252100840336, 'f1': 0.5583333333333335, 'number': 119} | {'precision': 0.8856121537086684, 'recall': 0.9201485608170845, 'f1': 0.9025500910746811, 'number': 1077} | 0.8641 | 0.8942 | 0.8789 | 0.8049 |
0.0011 | 84.21 | 1600 | 1.6894 | {'precision': 0.8883553421368547, 'recall': 0.9057527539779682, 'f1': 0.896969696969697, 'number': 817} | {'precision': 0.5887850467289719, 'recall': 0.5294117647058824, 'f1': 0.5575221238938053, 'number': 119} | {'precision': 0.8969917958067457, 'recall': 0.9136490250696379, 'f1': 0.9052437902483901, 'number': 1077} | 0.8773 | 0.8877 | 0.8825 | 0.8052 |
0.0008 | 94.74 | 1800 | 1.8811 | {'precision': 0.8722157092614302, 'recall': 0.9106487148102815, 'f1': 0.8910179640718563, 'number': 817} | {'precision': 0.5522388059701493, 'recall': 0.6218487394957983, 'f1': 0.5849802371541502, 'number': 119} | {'precision': 0.9012003693444137, 'recall': 0.9062209842154132, 'f1': 0.9037037037037038, 'number': 1077} | 0.8667 | 0.8912 | 0.8788 | 0.7898 |
0.0003 | 105.26 | 2000 | 1.8570 | {'precision': 0.8577981651376146, 'recall': 0.9155446756425949, 'f1': 0.8857312018946123, 'number': 817} | {'precision': 0.6702127659574468, 'recall': 0.5294117647058824, 'f1': 0.5915492957746479, 'number': 119} | {'precision': 0.9064220183486239, 'recall': 0.9173630454967502, 'f1': 0.9118597138901707, 'number': 1077} | 0.875 | 0.8937 | 0.8842 | 0.8074 |
0.0004 | 115.79 | 2200 | 1.8481 | {'precision': 0.8577981651376146, 'recall': 0.9155446756425949, 'f1': 0.8857312018946123, 'number': 817} | {'precision': 0.6194690265486725, 'recall': 0.5882352941176471, 'f1': 0.603448275862069, 'number': 119} | {'precision': 0.9063948100092678, 'recall': 0.9080779944289693, 'f1': 0.9072356215213357, 'number': 1077} | 0.8702 | 0.8922 | 0.8810 | 0.8029 |
0.0002 | 126.32 | 2400 | 1.8649 | {'precision': 0.8747072599531616, 'recall': 0.9143206854345165, 'f1': 0.8940754039497306, 'number': 817} | {'precision': 0.5859375, 'recall': 0.6302521008403361, 'f1': 0.6072874493927125, 'number': 119} | {'precision': 0.9066543438077634, 'recall': 0.9108635097493036, 'f1': 0.9087540528022232, 'number': 1077} | 0.8735 | 0.8957 | 0.8845 | 0.8017 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3