seizure_vit_jlb_231112_fft_raw_combo

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the JLB-JLB/seizure_detection_224x224_raw_frequency dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4822
  • Roc Auc: 0.7667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.4777 0.17 500 0.5237 0.7455
0.4469 0.34 1000 0.5114 0.7542
0.4122 0.52 1500 0.5084 0.7567
0.3904 0.69 2000 0.5043 0.7611
0.3619 0.86 2500 0.5283 0.7609
0.3528 1.03 3000 0.5352 0.7517
0.3445 1.2 3500 0.5338 0.7572
0.3221 1.37 4000 0.5388 0.7509
0.3109 1.55 4500 0.5641 0.7458
0.3203 1.72 5000 0.5404 0.7574
0.294 1.89 5500 0.5421 0.7564
0.2964 2.06 6000 0.5582 0.7493
0.292 2.23 6500 0.5513 0.7561
0.2838 2.4 7000 0.5557 0.7598
0.2736 2.58 7500 0.5514 0.7606
0.2922 2.75 8000 0.5503 0.7538
0.2699 2.92 8500 0.5535 0.7578

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JLB-JLB/seizure_vit_jlb_231112_fft_raw_combo

Finetuned
(1824)
this model