metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11480
- loss:OnlineContrastiveLoss
base_model: thenlper/gte-large
widget:
- source_sentence: PEÑA JARAMILLO
sentences:
- OSCAR ALBERTO ARREDONDO CASTANO
- JAIME ALBERTO QUINETRO SABOYA
- NESTOR HENRRY REYES PEÑA
- source_sentence: ALBERTO ANTONIO ZAPATA ELJACH ANUAR
sentences:
- ' SANTIAGOPE MORENO'
- DIEGOALVAREZ HERNANDEZ
- GABRIEL ALVARO ZAPATA B
- source_sentence: PAULA ANDREA VARGAS LOPEZ
sentences:
- LUZ MILENE GONZALEZ BRAVO
- FLAVIO ALBERTO DE JESUS ROLDAN MARTINEZ
- CAMILIA ANDREA VARGAS LOPEZ
- source_sentence: RAFAEL ANTONIO MARTINEZ RODRIGUEZ
sentences:
- RAFAEL TOMAS MARTINEZ RODRIGUEZ
- LEONOR DE
- MARTHA EUGEN GARCIA DE MARTINEZ VILLALBA
- source_sentence: ADRIANA JOSEFINA GRATEROL DE GUTIERREZ
sentences:
- CLAUDIA ROCIO RINCON SANCHEZ
- JOHSON ENRIQUE CORTES CRTES
- GUSTAVO LONDONO GUTIERREZ
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on thenlper/gte-large
This is a sentence-transformers model finetuned from thenlper/gte-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JFernandoGRE/gtelarge-colombian-elitenames2")
# Run inference
sentences = [
'ADRIANA JOSEFINA GRATEROL DE GUTIERREZ',
'GUSTAVO LONDONO GUTIERREZ',
'CLAUDIA ROCIO RINCON SANCHEZ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 11,480 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 8.22 tokens
- max: 19 tokens
- min: 4 tokens
- mean: 8.74 tokens
- max: 15 tokens
- 0: ~82.40%
- 1: ~17.60%
- Samples:
sentence1 sentence2 label ADELY ROMERO
PETERMANJARREZ ROMERO
0
JENIFERCAÑAVERAL QUINTERO
JENIFER MARIA CAÑAVERAL QUINTERO
1
ALBERTO ALBARRACIN VILLAMIZAR ESSENFELL
ANUAR ALBERTO PEREZ ESCAF
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 2,870 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 8.25 tokens
- max: 19 tokens
- min: 4 tokens
- mean: 8.65 tokens
- max: 15 tokens
- 0: ~82.60%
- 1: ~17.40%
- Samples:
sentence1 sentence2 label PEDRO NEL SIERRA CARDONA E HIJOS S EN C EN LIQUIDACION LIQUIDACION
PEDRO NEL SIERRA CARDONA
1
ALIKY LONDOÑO BOTERO
ELVIA CRISTINA LONDOÑO MENECES
0
FERNANDO GUTIERREZ DE PIÑERES HERZBERG
HER GUTIERREZ DE PIÑERES
1
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 1e-05num_train_epochs
: 5warmup_ratio
: 0.182fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.182warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1393 | 100 | 0.2368 | 0.2417 |
0.2786 | 200 | 0.1276 | 0.2186 |
0.4178 | 300 | 0.1381 | 0.1803 |
0.5571 | 400 | 0.1242 | 0.1682 |
0.6964 | 500 | 0.1113 | 0.1741 |
0.8357 | 600 | 0.1047 | 0.1321 |
0.9749 | 700 | 0.0906 | 0.1298 |
1.1142 | 800 | 0.0701 | 0.1270 |
1.2535 | 900 | 0.0702 | 0.1135 |
1.3928 | 1000 | 0.0807 | 0.0960 |
1.5320 | 1100 | 0.0632 | 0.0980 |
1.6713 | 1200 | 0.0666 | 0.0931 |
1.8106 | 1300 | 0.0773 | 0.0921 |
1.9499 | 1400 | 0.0738 | 0.0821 |
2.0891 | 1500 | 0.0585 | 0.0807 |
2.2284 | 1600 | 0.0359 | 0.0838 |
2.3677 | 1700 | 0.0509 | 0.0757 |
2.5070 | 1800 | 0.0393 | 0.0811 |
2.6462 | 1900 | 0.0437 | 0.0774 |
2.7855 | 2000 | 0.0258 | 0.0802 |
2.9248 | 2100 | 0.0437 | 0.0825 |
3.0641 | 2200 | 0.0297 | 0.0789 |
3.2033 | 2300 | 0.0308 | 0.0788 |
3.3426 | 2400 | 0.0411 | 0.0772 |
3.4819 | 2500 | 0.0322 | 0.0794 |
3.6212 | 2600 | 0.0268 | 0.0793 |
3.7604 | 2700 | 0.036 | 0.0839 |
3.8997 | 2800 | 0.033 | 0.0821 |
4.0390 | 2900 | 0.0299 | 0.0794 |
4.1783 | 3000 | 0.0226 | 0.0797 |
4.3175 | 3100 | 0.0198 | 0.0760 |
4.4568 | 3200 | 0.0293 | 0.0771 |
4.5961 | 3300 | 0.0274 | 0.0747 |
4.7354 | 3400 | 0.0162 | 0.0746 |
4.8747 | 3500 | 0.0351 | 0.0745 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}