Izarel's picture
Update README.md
d594d38
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: distilbert-base-uncased_fine_tuned_title_and_text
    results: []

distilbert-base-uncased_fine_tuned

This model is a fine-tuned version of distilbert-base-uncased on an reddit dataset -for NSFW classification. It was trained on titles + body_text of submissions. It achieves the following results on the evaluation set:

  • Loss: 1.0159
  • Accuracy: {'accuracy': 0.9095537914043252}
  • Recall: {'recall': 0.8936873290793071}
  • Precision: {'precision': 0.916024293389395}
  • F1: {'f1': 0.9047179605490829}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.256 1.0 2284 0.2569 {'accuracy': 0.9085683000273748} {'recall': 0.8976754785779398} {'precision': 0.9107514450867052} {'f1': 0.9041661884540342}
0.1948 2.0 4568 0.2471 {'accuracy': 0.9138242540377771} {'recall': 0.8644029170464904} {'precision': 0.9518193224592221} {'f1': 0.9060074047533739}
0.1318 3.0 6852 0.3057 {'accuracy': 0.914207500684369} {'recall': 0.8977894257064722} {'precision': 0.9216282606152767} {'f1': 0.9095526695526697}
0.0865 4.0 9136 0.4174 {'accuracy': 0.9047358335614564} {'recall': 0.8697584320875114} {'precision': 0.9274605103280681} {'f1': 0.8976831706456546}
0.0545 5.0 11420 0.4635 {'accuracy': 0.9095537914043252} {'recall': 0.8849134001823155} {'precision': 0.9236441484300666} {'f1': 0.9038640595903165}
0.0359 6.0 13704 0.5654 {'accuracy': 0.9071448124828908} {'recall': 0.8919781221513218} {'precision': 0.9127798507462687} {'f1': 0.9022591055786076}
0.0262 7.0 15988 0.5568 {'accuracy': 0.8994251300301123} {'recall': 0.900865998176846} {'precision': 0.8910176941282543} {'f1': 0.8959147827072356}
0.0181 8.0 18272 0.6846 {'accuracy': 0.9042430878729811} {'recall': 0.9026891522333638} {'precision': 0.898491550413973} {'f1': 0.9005854601261866}
0.0121 9.0 20556 0.7516 {'accuracy': 0.9071448124828908} {'recall': 0.8990428441203282} {'precision': 0.906896551724138} {'f1': 0.9029526207370108}
0.0119 10.0 22840 0.8614 {'accuracy': 0.9050095811661648} {'recall': 0.9002962625341842} {'precision': 0.9018376897614427} {'f1': 0.9010663169299197}
0.0105 11.0 25124 0.7298 {'accuracy': 0.9105940323022174} {'recall': 0.8907247037374658} {'precision': 0.9206218348839948} {'f1': 0.9054265361672554}
0.0049 12.0 27408 0.9237 {'accuracy': 0.9101560361346839} {'recall': 0.8828623518687329} {'precision': 0.9266834110752302} {'f1': 0.9042422827799498}
0.0026 13.0 29692 0.9489 {'accuracy': 0.9066520667944156} {'recall': 0.8988149498632635} {'precision': 0.9061458931648478} {'f1': 0.9024655340083519}
0.0016 14.0 31976 1.0045 {'accuracy': 0.9099917875718587} {'recall': 0.8963081130355515} {'precision': 0.9146511627906977} {'f1': 0.9053867403314917}
0.0022 15.0 34260 1.0159 {'accuracy': 0.9095537914043252} {'recall': 0.8936873290793071} {'precision': 0.916024293389395} {'f1': 0.9047179605490829}

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1