Izarel's picture
update model card README.md
2823453
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: bert-base-uncased_title_fine_tuned
    results: []

bert-base-uncased_title_fine_tuned

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3368
  • Accuracy: {'accuracy': 0.8810840405146455}
  • Recall: {'recall': 0.8611674554879423}
  • Precision: {'precision': 0.890468422279189}
  • F1: {'f1': 0.8755728689275893}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.3224 1.0 3045 0.3079 {'accuracy': 0.8730358609362168} {'recall': 0.8139508677034032} {'precision': 0.915346597389431} {'f1': 0.861676110945422}
0.2818 2.0 6090 0.3153 {'accuracy': 0.8814672871612373} {'recall': 0.8299526707234618} {'precision': 0.9182146864480738} {'f1': 0.8718555785735426}
0.2394 3.0 9135 0.3104 {'accuracy': 0.8830002737476047} {'recall': 0.8548568852828488} {'precision': 0.8993479549496147} {'f1': 0.8765382171124848}
0.204 4.0 12180 0.3368 {'accuracy': 0.8810840405146455} {'recall': 0.8611674554879423} {'precision': 0.890468422279189} {'f1': 0.8755728689275893}

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1