vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR-finetune
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5530
- Accuracy: 0.8733
- Precision: 0.8738
- Recall: 0.8733
- F1: 0.8688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1177 | 0.6667 | 100 | 0.5870 | 0.8358 | 0.8505 | 0.8358 | 0.8374 |
0.0716 | 1.3333 | 200 | 0.5973 | 0.84 | 0.8532 | 0.84 | 0.8370 |
0.0493 | 2.0 | 300 | 0.8088 | 0.815 | 0.8349 | 0.815 | 0.8146 |
0.0037 | 2.6667 | 400 | 0.9701 | 0.8183 | 0.8454 | 0.8183 | 0.8159 |
0.0835 | 3.3333 | 500 | 0.5530 | 0.8733 | 0.8738 | 0.8733 | 0.8688 |
0.0169 | 4.0 | 600 | 0.9139 | 0.8008 | 0.8338 | 0.8008 | 0.7979 |
0.0019 | 4.6667 | 700 | 0.8676 | 0.84 | 0.8546 | 0.84 | 0.8397 |
0.0013 | 5.3333 | 800 | 0.7638 | 0.8525 | 0.8594 | 0.8525 | 0.8506 |
0.0011 | 6.0 | 900 | 0.7257 | 0.8675 | 0.8711 | 0.8675 | 0.8658 |
0.0009 | 6.6667 | 1000 | 0.7446 | 0.8717 | 0.8746 | 0.8717 | 0.8695 |
0.0008 | 7.3333 | 1100 | 0.7601 | 0.8725 | 0.8759 | 0.8725 | 0.8702 |
0.0007 | 8.0 | 1200 | 0.7734 | 0.8725 | 0.8759 | 0.8725 | 0.8702 |
0.0006 | 8.6667 | 1300 | 0.7845 | 0.8725 | 0.8762 | 0.8725 | 0.8702 |
0.0006 | 9.3333 | 1400 | 0.7941 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0005 | 10.0 | 1500 | 0.8019 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0005 | 10.6667 | 1600 | 0.8085 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0005 | 11.3333 | 1700 | 0.8148 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0004 | 12.0 | 1800 | 0.8197 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0004 | 12.6667 | 1900 | 0.8236 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0004 | 13.3333 | 2000 | 0.8268 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0004 | 14.0 | 2100 | 0.8289 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
0.0004 | 14.6667 | 2200 | 0.8300 | 0.8717 | 0.8753 | 0.8717 | 0.8692 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Accuracy on imagefoldertest set self-reported0.873
- Precision on imagefoldertest set self-reported0.874
- Recall on imagefoldertest set self-reported0.873
- F1 on imagefoldertest set self-reported0.869