vit-base-kidney-stone-v1.3
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5130
- Accuracy: 0.8462
- Precision: 0.8698
- Recall: 0.8462
- F1: 0.8491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3224 | 0.33 | 100 | 0.7322 | 0.7733 | 0.8267 | 0.7733 | 0.7799 |
0.215 | 0.67 | 200 | 0.5891 | 0.8354 | 0.8493 | 0.8354 | 0.8277 |
0.1172 | 1.0 | 300 | 0.5130 | 0.8462 | 0.8698 | 0.8462 | 0.8491 |
0.1032 | 1.33 | 400 | 1.1484 | 0.7342 | 0.7621 | 0.7342 | 0.7382 |
0.0451 | 1.67 | 500 | 0.7157 | 0.8304 | 0.8643 | 0.8304 | 0.8269 |
0.0067 | 2.0 | 600 | 0.6492 | 0.8546 | 0.8771 | 0.8546 | 0.8522 |
0.0067 | 2.33 | 700 | 0.5537 | 0.8754 | 0.8897 | 0.8754 | 0.8740 |
0.0042 | 2.67 | 800 | 0.8779 | 0.8254 | 0.8325 | 0.8254 | 0.8237 |
0.0034 | 3.0 | 900 | 0.7757 | 0.8529 | 0.8728 | 0.8529 | 0.8515 |
0.0029 | 3.33 | 1000 | 0.7567 | 0.8483 | 0.8663 | 0.8483 | 0.8476 |
0.003 | 3.67 | 1100 | 0.7431 | 0.8538 | 0.8704 | 0.8538 | 0.8530 |
0.0028 | 4.0 | 1200 | 0.7395 | 0.8554 | 0.8716 | 0.8554 | 0.8547 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.1
- Datasets 3.1.0
- Tokenizers 0.15.2
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for Ivanrs/vit-base-kidney-stone-v1.3
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.846
- Precision on imagefoldertest set self-reported0.870
- Recall on imagefoldertest set self-reported0.846
- F1 on imagefoldertest set self-reported0.849