vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3802
- Accuracy: 0.8975
- Precision: 0.9004
- Recall: 0.8975
- F1: 0.8961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1982 | 0.6667 | 100 | 0.5328 | 0.8342 | 0.8678 | 0.8342 | 0.8304 |
0.103 | 1.3333 | 200 | 0.5614 | 0.8342 | 0.8518 | 0.8342 | 0.8235 |
0.0646 | 2.0 | 300 | 0.3802 | 0.8975 | 0.9004 | 0.8975 | 0.8961 |
0.0206 | 2.6667 | 400 | 0.5236 | 0.8908 | 0.8932 | 0.8908 | 0.8910 |
0.0073 | 3.3333 | 500 | 0.4848 | 0.885 | 0.9037 | 0.885 | 0.8879 |
0.0237 | 4.0 | 600 | 0.6534 | 0.8617 | 0.8872 | 0.8617 | 0.8633 |
0.0414 | 4.6667 | 700 | 0.5937 | 0.8808 | 0.8914 | 0.8808 | 0.8782 |
0.0027 | 5.3333 | 800 | 0.5129 | 0.8933 | 0.8992 | 0.8933 | 0.8953 |
0.0023 | 6.0 | 900 | 0.6645 | 0.8867 | 0.9012 | 0.8867 | 0.8876 |
0.0017 | 6.6667 | 1000 | 0.4428 | 0.9158 | 0.9162 | 0.9158 | 0.9158 |
0.0014 | 7.3333 | 1100 | 0.4490 | 0.9183 | 0.9188 | 0.9183 | 0.9183 |
0.0012 | 8.0 | 1200 | 0.4573 | 0.9183 | 0.9188 | 0.9183 | 0.9183 |
0.0011 | 8.6667 | 1300 | 0.4643 | 0.9183 | 0.9186 | 0.9183 | 0.9182 |
0.001 | 9.3333 | 1400 | 0.4724 | 0.9175 | 0.9178 | 0.9175 | 0.9174 |
0.0009 | 10.0 | 1500 | 0.4783 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
0.0008 | 10.6667 | 1600 | 0.4834 | 0.92 | 0.9205 | 0.92 | 0.9200 |
0.0008 | 11.3333 | 1700 | 0.4880 | 0.9183 | 0.9188 | 0.9183 | 0.9183 |
0.0007 | 12.0 | 1800 | 0.4913 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
0.0007 | 12.6667 | 1900 | 0.4946 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
0.0007 | 13.3333 | 2000 | 0.4967 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
0.0006 | 14.0 | 2100 | 0.4982 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
0.0006 | 14.6667 | 2200 | 0.4990 | 0.9192 | 0.9196 | 0.9192 | 0.9191 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Ivanrs/vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.897
- Precision on imagefoldertest set self-reported0.900
- Recall on imagefoldertest set self-reported0.897
- F1 on imagefoldertest set self-reported0.896