Ivanrs's picture
vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
03d040e verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.83375
          - name: Precision
            type: precision
            value: 0.8588680878951838
          - name: Recall
            type: recall
            value: 0.83375
          - name: F1
            type: f1
            value: 0.8355968544321966

vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4940
  • Accuracy: 0.8337
  • Precision: 0.8589
  • Recall: 0.8337
  • F1: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.1919 0.3333 100 0.4940 0.8337 0.8589 0.8337 0.8356
0.1697 0.6667 200 0.6993 0.8092 0.8485 0.8092 0.8059
0.1514 1.0 300 0.5555 0.8442 0.8565 0.8442 0.8443
0.0991 1.3333 400 0.5918 0.8467 0.8741 0.8467 0.8453
0.0415 1.6667 500 0.6080 0.8558 0.8690 0.8558 0.8553
0.1112 2.0 600 0.9788 0.7983 0.8485 0.7983 0.8028
0.0658 2.3333 700 1.0272 0.8004 0.8310 0.8004 0.8002
0.0977 2.6667 800 0.6861 0.8479 0.8570 0.8479 0.8482
0.03 3.0 900 0.8317 0.8025 0.8225 0.8025 0.8048
0.0253 3.3333 1000 0.8574 0.8242 0.8408 0.8242 0.8254
0.0564 3.6667 1100 0.8591 0.8392 0.8513 0.8392 0.8343
0.0285 4.0 1200 1.3453 0.7512 0.8090 0.7512 0.7484
0.002 4.3333 1300 0.9746 0.8192 0.8381 0.8192 0.8227
0.0214 4.6667 1400 0.7404 0.8646 0.8641 0.8646 0.8572
0.0282 5.0 1500 1.0063 0.8233 0.8486 0.8233 0.8219
0.03 5.3333 1600 1.0066 0.8025 0.8376 0.8025 0.8058
0.028 5.6667 1700 1.1451 0.8108 0.8325 0.8108 0.8067
0.0078 6.0 1800 1.0700 0.805 0.8220 0.805 0.8045
0.0008 6.3333 1900 1.0180 0.8146 0.8303 0.8146 0.8165
0.0008 6.6667 2000 0.9882 0.8246 0.8401 0.8246 0.8236
0.0006 7.0 2100 1.0366 0.8283 0.8424 0.8283 0.8270
0.0009 7.3333 2200 1.1136 0.8121 0.8309 0.8121 0.8143
0.0068 7.6667 2300 1.0873 0.8117 0.8128 0.8117 0.8015
0.0006 8.0 2400 0.8601 0.8325 0.8383 0.8325 0.8292
0.0187 8.3333 2500 0.9700 0.8258 0.8375 0.8258 0.8241
0.0005 8.6667 2600 0.8825 0.8175 0.8339 0.8175 0.8199
0.0005 9.0 2700 1.0314 0.8242 0.8455 0.8242 0.8230
0.0004 9.3333 2800 1.0323 0.8233 0.8443 0.8233 0.8230
0.0003 9.6667 2900 1.0397 0.8229 0.8433 0.8229 0.8229
0.0003 10.0 3000 1.0473 0.8237 0.8437 0.8237 0.8239
0.0003 10.3333 3100 1.0536 0.8229 0.8428 0.8229 0.8233
0.0003 10.6667 3200 1.0605 0.8229 0.8429 0.8229 0.8234
0.0003 11.0 3300 1.0667 0.8229 0.8429 0.8229 0.8234
0.0002 11.3333 3400 1.0711 0.8237 0.8436 0.8237 0.8243
0.0002 11.6667 3500 1.0750 0.8246 0.8441 0.8246 0.8251
0.0002 12.0 3600 1.0804 0.825 0.8443 0.825 0.8257
0.0002 12.3333 3700 1.0839 0.825 0.8440 0.825 0.8257
0.0002 12.6667 3800 1.0875 0.8246 0.8436 0.8246 0.8253
0.0002 13.0 3900 1.0909 0.8246 0.8436 0.8246 0.8253
0.0002 13.3333 4000 1.0930 0.8246 0.8436 0.8246 0.8253
0.0002 13.6667 4100 1.0954 0.8237 0.8429 0.8237 0.8246
0.0002 14.0 4200 1.0975 0.8237 0.8429 0.8237 0.8246
0.0002 14.3333 4300 1.0988 0.8237 0.8429 0.8237 0.8246
0.0002 14.6667 4400 1.0997 0.8237 0.8429 0.8237 0.8246
0.0002 15.0 4500 1.1000 0.8237 0.8429 0.8237 0.8246

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0