vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3066
- Accuracy: 0.9417
- Precision: 0.9483
- Recall: 0.9417
- F1: 0.9388
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.056 | 0.6667 | 100 | 0.4899 | 0.85 | 0.8963 | 0.85 | 0.8476 |
0.0229 | 1.3333 | 200 | 0.5003 | 0.8792 | 0.9087 | 0.8792 | 0.8645 |
0.0082 | 2.0 | 300 | 0.3076 | 0.8883 | 0.9190 | 0.8883 | 0.8891 |
0.0049 | 2.6667 | 400 | 0.4297 | 0.9067 | 0.9307 | 0.9067 | 0.9055 |
0.0355 | 3.3333 | 500 | 0.7084 | 0.8325 | 0.9102 | 0.8325 | 0.8265 |
0.0752 | 4.0 | 600 | 0.5323 | 0.875 | 0.8919 | 0.875 | 0.8602 |
0.0025 | 4.6667 | 700 | 0.4350 | 0.8983 | 0.9142 | 0.8983 | 0.8952 |
0.0018 | 5.3333 | 800 | 0.3244 | 0.935 | 0.9428 | 0.935 | 0.9310 |
0.0014 | 6.0 | 900 | 0.3183 | 0.9367 | 0.9443 | 0.9367 | 0.9328 |
0.0012 | 6.6667 | 1000 | 0.3114 | 0.9367 | 0.9441 | 0.9367 | 0.9330 |
0.0011 | 7.3333 | 1100 | 0.3090 | 0.9367 | 0.9442 | 0.9367 | 0.9330 |
0.0009 | 8.0 | 1200 | 0.3078 | 0.9392 | 0.9463 | 0.9392 | 0.9359 |
0.0008 | 8.6667 | 1300 | 0.3077 | 0.94 | 0.9470 | 0.94 | 0.9369 |
0.0008 | 9.3333 | 1400 | 0.3068 | 0.9408 | 0.9476 | 0.9408 | 0.9378 |
0.0007 | 10.0 | 1500 | 0.3068 | 0.9417 | 0.9483 | 0.9417 | 0.9388 |
0.0007 | 10.6667 | 1600 | 0.3066 | 0.9417 | 0.9483 | 0.9417 | 0.9388 |
0.0006 | 11.3333 | 1700 | 0.3078 | 0.9425 | 0.9490 | 0.9425 | 0.9398 |
0.0006 | 12.0 | 1800 | 0.3080 | 0.9425 | 0.9490 | 0.9425 | 0.9398 |
0.0006 | 12.6667 | 1900 | 0.3086 | 0.9433 | 0.9499 | 0.9433 | 0.9406 |
0.0005 | 13.3333 | 2000 | 0.3091 | 0.9433 | 0.9499 | 0.9433 | 0.9406 |
0.0005 | 14.0 | 2100 | 0.3093 | 0.9433 | 0.9499 | 0.9433 | 0.9406 |
0.0005 | 14.6667 | 2200 | 0.3095 | 0.9433 | 0.9499 | 0.9433 | 0.9406 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Ivanrs/vit-base-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.942
- Precision on imagefoldertest set self-reported0.948
- Recall on imagefoldertest set self-reported0.942
- F1 on imagefoldertest set self-reported0.939