deberta-v3-base_finetuned_ai4privacy_v2
This model is a fine-tuned version of microsoft/deberta-v3-base on the ai4privacy/pii-masking-200k dataset.
Useage
GitHub Implementation: Ai4Privacy
Model description
This model has been finetuned on the World's largest open source privacy dataset.
The purpose of the trained models is to remove personally identifiable information (PII) from text, especially in the context of AI assistants and LLMs.
The example texts have 54 PII classes (types of sensitive data), targeting 229 discussion subjects / use cases split across business, education, psychology and legal fields, and 5 interactions styles (e.g. casual conversation, formal document, emails etc...).
Take a look at the Github implementation for specific reasearch.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-04
- train_batch_size: 32
- eval_batch_size: 32
- seed: 412
- optimizer: Adam with betas=(0.96,0.996) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.22
- num_epochs: 7
- mixed_precision_training: N/A
Class wise metrics
It achieves the following results on the evaluation set:
Loss: 0.0211
Overall Precision: 0.9722
Overall Recall: 0.9792
Overall F1: 0.9757
Overall Accuracy: 0.9915
Accountname F1: 0.9993
Accountnumber F1: 0.9986
Age F1: 0.9884
Amount F1: 0.9984
Bic F1: 0.9942
Bitcoinaddress F1: 0.9974
Buildingnumber F1: 0.9898
City F1: 1.0
Companyname F1: 1.0
County F1: 0.9976
Creditcardcvv F1: 0.9541
Creditcardissuer F1: 0.9970
Creditcardnumber F1: 0.9754
Currency F1: 0.8966
Currencycode F1: 0.9946
Currencyname F1: 0.7697
Currencysymbol F1: 0.9958
Date F1: 0.9778
Dob F1: 0.9546
Email F1: 1.0
Ethereumaddress F1: 1.0
Eyecolor F1: 0.9925
Firstname F1: 0.9947
Gender F1: 1.0
Height F1: 1.0
Iban F1: 0.9978
Ip F1: 0.5404
Ipv4 F1: 0.8455
Ipv6 F1: 0.8855
Jobarea F1: 0.9091
Jobtitle F1: 1.0
Jobtype F1: 0.9672
Lastname F1: 0.9855
Litecoinaddress F1: 0.9949
Mac F1: 0.9965
Maskednumber F1: 0.9836
Middlename F1: 0.7385
Nearbygpscoordinate F1: 1.0
Ordinaldirection F1: 1.0
Password F1: 1.0
Phoneimei F1: 0.9978
Phonenumber F1: 0.9975
Pin F1: 0.9820
Prefix F1: 0.9872
Secondaryaddress F1: 1.0
Sex F1: 0.9916
Ssn F1: 0.9960
State F1: 0.9967
Street F1: 0.9991
Time F1: 1.0
Url F1: 1.0
Useragent F1: 0.9981
Username F1: 1.0
Vehiclevin F1: 0.9950
Vehiclevrm F1: 0.9870
Zipcode F1: 0.9966
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3984 | 1.0 | 2393 | 0.5120 | 0.7268 | 0.7819 | 0.7533 | 0.8741 | 0.9265 | 0.9819 | 0.8237 | 0.5053 | 0.2315 | 0.8197 | 0.7840 | 0.4886 | 0.8657 | 0.6338 | 0.8775 | 0.8575 | 0.7152 | 0.4533 | 0.0959 | 0.0 | 0.6480 | 0.7621 | 0.1884 | 0.9840 | 1.0 | 0.6194 | 0.8740 | 0.6610 | 0.9642 | 0.9039 | 0.0 | 0.8500 | 0.0220 | 0.6325 | 0.7840 | 0.6899 | 0.7667 | 0.0 | 0.2966 | 0.0 | 0.3682 | 0.9986 | 0.9387 | 0.8558 | 0.9879 | 0.9687 | 0.7455 | 0.9252 | 0.9661 | 0.9110 | 0.9771 | 0.5282 | 0.7988 | 0.8453 | 0.9648 | 0.9804 | 0.9356 | 0.7741 | 0.6780 | 0.7915 |
0.2097 | 2.0 | 4786 | 0.1406 | 0.8392 | 0.8913 | 0.8645 | 0.9509 | 0.9760 | 0.9114 | 0.9227 | 0.7647 | 0.9190 | 0.9554 | 0.8975 | 0.8881 | 0.9535 | 0.8414 | 0.9114 | 0.9820 | 0.8503 | 0.7525 | 0.6171 | 0.0077 | 0.8787 | 0.3161 | 0.2847 | 0.9924 | 0.9918 | 0.9495 | 0.9076 | 0.9625 | 0.9890 | 0.9870 | 0.0 | 0.8484 | 0.8007 | 0.8651 | 0.9660 | 0.9164 | 0.8695 | 0.8756 | 0.9685 | 0.7768 | 0.6697 | 0.9956 | 0.9754 | 0.9652 | 0.9976 | 0.9849 | 0.7977 | 0.9373 | 0.9923 | 0.9815 | 0.9828 | 0.8093 | 0.9445 | 0.9735 | 0.9933 | 0.9651 | 0.9854 | 0.9843 | 0.975 | 0.8123 |
0.1271 | 3.0 | 7179 | 0.1049 | 0.9218 | 0.9312 | 0.9265 | 0.9618 | 0.9950 | 0.9880 | 0.9172 | 0.9309 | 0.9652 | 0.8222 | 0.9160 | 0.9364 | 0.9749 | 0.9556 | 0.9211 | 0.9856 | 0.8939 | 0.8237 | 0.76 | 0.0080 | 0.9360 | 0.8735 | 0.5567 | 0.9993 | 0.9973 | 0.9872 | 0.9547 | 0.9773 | 0.9574 | 0.9694 | 0.0 | 0.8510 | 0.8032 | 0.9404 | 0.9844 | 0.9522 | 0.9294 | 0.8584 | 1.0 | 0.8603 | 0.8908 | 1.0 | 0.9829 | 0.9513 | 1.0 | 0.9792 | 0.8579 | 0.9413 | 0.9968 | 0.9513 | 0.9929 | 0.9278 | 0.9484 | 0.9862 | 0.9940 | 0.8884 | 0.9943 | 0.9616 | 0.9648 | 0.9395 |
0.1345 | 4.0 | 9572 | 0.0941 | 0.9463 | 0.9580 | 0.9521 | 0.9659 | 0.9975 | 0.9979 | 0.9356 | 0.9597 | 0.9084 | 0.9569 | 0.9827 | 0.9734 | 0.9835 | 0.9780 | 0.9634 | 0.9904 | 0.9393 | 0.8542 | 0.8915 | 0.4069 | 0.9636 | 0.8873 | 0.6572 | 0.9993 | 1.0 | 0.9923 | 0.9796 | 0.9983 | 0.9917 | 0.9972 | 0.0 | 0.8515 | 0.8027 | 0.9689 | 0.9943 | 0.9685 | 0.9668 | 0.8162 | 0.9912 | 0.9110 | 0.9364 | 1.0 | 0.9848 | 0.9734 | 0.9976 | 0.9949 | 0.9739 | 0.9609 | 0.9968 | 0.9906 | 0.9899 | 0.9772 | 0.9875 | 0.9855 | 0.9978 | 1.0 | 0.9972 | 0.9867 | 0.9817 | 0.9780 |
0.1067 | 5.0 | 11965 | 0.0724 | 0.9556 | 0.9659 | 0.9607 | 0.9699 | 0.9967 | 0.9965 | 0.9705 | 0.9742 | 0.9892 | 0.9736 | 0.9891 | 0.9794 | 0.9951 | 0.9860 | 0.9897 | 0.9892 | 0.9517 | 0.8386 | 0.9770 | 0.4186 | 0.9822 | 0.8869 | 0.7016 | 1.0 | 1.0 | 0.9949 | 0.9859 | 0.9983 | 1.0 | 0.9954 | 0.0075 | 0.8569 | 0.8012 | 0.9819 | 0.9979 | 0.9856 | 0.9843 | 0.9383 | 1.0 | 0.9318 | 0.9461 | 1.0 | 0.9905 | 1.0 | 1.0 | 0.9978 | 0.9906 | 0.9646 | 0.9981 | 0.9924 | 0.9970 | 0.9862 | 0.9966 | 0.9951 | 0.9970 | 1.0 | 0.9981 | 0.9933 | 1.0 | 0.9913 |
0.0808 | 6.0 | 14358 | 0.0693 | 0.9664 | 0.9732 | 0.9698 | 0.9728 | 1.0 | 1.0 | 0.9760 | 0.9897 | 0.9978 | 0.9907 | 0.9906 | 0.9930 | 0.9994 | 0.9939 | 1.0 | 0.9891 | 0.9590 | 0.9052 | 0.9875 | 0.7022 | 0.9892 | 0.9126 | 0.7438 | 1.0 | 1.0 | 1.0 | 0.9934 | 0.9991 | 1.0 | 1.0 | 0.1551 | 0.8393 | 0.8034 | 0.9942 | 0.9993 | 0.9928 | 0.9877 | 0.9770 | 1.0 | 0.9451 | 0.9773 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9722 | 0.9974 | 0.9949 | 0.9970 | 0.9941 | 0.9972 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9890 |
0.0779 | 7.0 | 16751 | 0.0697 | 0.9698 | 0.9756 | 0.9727 | 0.9739 | 0.9983 | 1.0 | 0.9815 | 0.9904 | 1.0 | 0.9938 | 0.9935 | 0.9930 | 0.9994 | 0.9935 | 1.0 | 0.9903 | 0.9584 | 0.9206 | 0.9917 | 0.7753 | 0.9914 | 0.9315 | 0.8305 | 1.0 | 1.0 | 1.0 | 0.9939 | 1.0 | 1.0 | 1.0 | 0.1404 | 0.8382 | 0.8029 | 0.9958 | 1.0 | 0.9944 | 0.9910 | 0.9875 | 1.0 | 0.9480 | 0.9788 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9747 | 0.9961 | 0.9949 | 0.9970 | 0.9925 | 0.9983 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9953 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 24,924
Model tree for Isotonic/deberta-v3-base_finetuned_ai4privacy_v2
Base model
microsoft/deberta-v3-base