Ioanaaaaaaa's picture
update model card README.md
9de827c
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.939
          - name: F1
            type: f1
            value: 0.9390844003351607

bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr

This model is a fine-tuned version of bert-large-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1591
  • Accuracy: 0.939
  • F1: 0.9391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5175 1.0 250 0.1803 0.9285 0.9295
0.1551 2.0 500 0.1425 0.932 0.9321
0.1112 3.0 750 0.1495 0.936 0.9366
0.0846 4.0 1000 0.1359 0.946 0.9457
0.0602 5.0 1250 0.1591 0.939 0.9391

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3