PEFT
Safetensors
English
jinjieyuan's picture
Create README.md
3b8e6a9
|
raw
history blame
4.19 kB
metadata
language: en
license: apache-2.0

Shears Model Card: Shears-llama-13b-50-math-heuristic

Fine tuned model on LLaMA-13B with some math reasoning datasets using Shears.

Model Details

Information

  • Model name: Shears-llama-13b-50-math-heuristic
  • Base model: LLaMA-13b
  • Sparsity: 50%
  • Domain: Math
  • Subnetwork version: Heuristic

Adapter Configuration

  • LoRA rank: 32 (24 in the heuristic subnetwork)
  • LoRA alpha: 64
  • LoRA target modules: q_proj, k_proj, v_proj, up_proj, down_proj
  • LoRA rank search space: [32, 24, 16]

Training Hyperparameters

  • Batch size: 16
  • Learning rate: 3e-4
  • Epoch: 3

Training Data

Unified math reasoning dataset: math_10k.json (collected with the training sets of GSM8K, MAWPS, and AQuA).

Evaluation Data

GSM8K, AQuA, MAWPS, SVAMP

How to use

import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

def generate_prompt(instruction):
    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. 

                    ### Instruction:
                    {instruction}

                    ### Response:
                    """

base_model_path = "shears-llama-13b-50-math-heuristic/base_model"
adapter_model_path = "shears-llama-13b-50-math-heuristic/adapter_model"
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
model = PeftModel.from_pretrained(base_model, adapter_model_path)
model.eval()

non_zero_params = sum([(param.data != 0).sum().item() for _, param in model.named_parameters()])
print(f"Number of all non-zero parameters: {non_zero_params}")

tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token_id = 0

instruction = "Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does his brother eat in a week?"
prompt = generate_prompt(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(model.device)
with torch.no_grad():
    generation_output = model.generate(
        input_ids=input_ids,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256,
        use_cache=True,
        num_beams=4,
    )
  s = generation_output.sequences[0]
  output = tokenizer.decode(s)
print(output)

Evaluation Results

Model Sparsity GSM8K AQuA MAWPS SVAMP Average
LLaMA-7B-LoRA - 37.5 18.9 79.0 52.1 46.9
LLaMA-7B-Shears 50% 36.1 22.0 78.6 44.5 45.3
LLaMA-13B-LoRA - 47.5 18.5 83.6 54.6 51.1
LLaMA-13B-Shears 50% 45.1 22.0 83.2 53.3 50.9

Model Sources

Citation

@article{munoz2024shears,
  title = {Shears: Unstructured Sparsity with Neural Low-rank Adapter Search},
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
  journal={},
  year={2024}
}

License

Apache-2.0