michaelbeale-il's picture
Update README.md
9f272f8 verified
|
raw
history blame
4.67 kB
metadata
language: en
license: apache-2.0

LoNAS Adapter Card: lonas-llama-7b-commonsense-adapter

The super-adapter-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS.

Model Details

Information

  • Adapter name: lonas-llama-7b-commonsense-adapter
  • Base model: LLaMA-7b
  • Domain: Commonsense
  • Subnetwork version: Super-network
  • NNCF Configuration: nncf_lonas_llama_7b.json

Adapter Configuration

  • LoRA rank: 32
  • LoRA alpha: 64
  • LoRA target modules: q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj

Training Hyperparameters

  • Batch size: 16
  • Learning rate: 3e-4
  • Epoch: 6

Training Data

Unified commonsense reasoning dataset: commonsense_15k.json.

Evaluation Data

BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA.

How to use

Refer to https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation:

CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \
    --dataset_path None \
    --model_name_or_path yahma/llama-7b-hf \
    --lora \
    --lora_weights lonas-llama-7b-commonsense \
    --nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \
    --do_test \
    --output_dir lonas-llama-7b-commonsense/results

Evaluation Results

Results of the heuristic sub-network discoverd from the super-network:

Method Total Params. TFLOPs BoolQ PIQA SIQA HellaSwag WinoG Arc-e Arc-c OBQA Average
LoRA 6.7B 1.7 62.6 75.3 67.9 52.9 58.6 79.2 58.3 71.2 65.8
LoNAS 5.6B 1.4 62.9 73.0 68.7 51.4 63.9 72.3 58.5 71.0 65.2

Model Sources

Ethical Considerations

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See Intel’s Global Human Rights Principles. Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.

Ethical Considerations Description
Data The adapter was trained using the commonsense_15k data mixture as described above.
Human life The model is not intended to inform decisions central to human life or flourishing.
Mitigations No additional risk mitigation strategies were considered during model development.
Risks and harms This model has not been assessed for harm or biases, and should not be used for sensitive applications where it may cause harm.
Use cases -

Citation

@inproceedings{
munoz2024lonas,
title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
author={J. Pablo Muñoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation},
year={2024},
url={}
}

License

Apache-2.0