xinhe's picture
Update README.md
3241dc5
|
raw
history blame
1.17 kB
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- mrpc
metrics:
- f1
---
# INT8 BERT base uncased finetuned MRPC
### Post-training static quantization
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304.
The linear module **bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense** falls back to fp32 to meet the 1% relative accuracy loss.
### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8997|0.9042|
| **Model size (MB)** |120|418|
### Load with Intel® Neural Compressor:
```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/bert-base-uncased-mrpc-int8-static',
)
```