xinhe's picture
Update README.md
235263f
|
raw
history blame
1.05 kB
metadata
language: en
license: apache-2.0
tags:
  - text-classfication
  - int8
  - Intel® Neural Compressor
  - PostTrainingStatic
datasets:
  - mrpc
metrics:
  - f1

INT8 BERT base uncased finetuned MRPC

Post-training static quantization

This is an INT8 PyTorch model quantized with Intel® Neural Compressor.

The original fp32 model comes from the fine-tuned model Intel/bert-base-uncased-mrpc.

The calibration dataloader is the train dataloader. The calibration sampling size is 1000.

The linear module bert.encoder.layer.9.output.dense falls back to fp32 to meet the 1% relative accuracy loss.

Test result

INT8 FP32
Accuracy (eval-f1) 0.8959 0.9042
Model size (MB) 119 418

Load with Intel® Neural Compressor:

from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
    'Intel/bert-base-uncased-mrpc-int8-static',
)