File size: 1,583 Bytes
b11c450 b162079 b11c450 b162079 b11c450 b162079 b11c450 b162079 b11c450 03cf0db 72920eb b11c450 b162079 b11c450 b162079 1af1979 b162079 b11c450 8a1d1fd 72920eb b162079 03cf0db b162079 72920eb b162079 72920eb b162079 1af1979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- QuantizationAwareTraining
datasets:
- mrpc
metrics:
- f1
---
# INT8 BERT base uncased finetuned MRPC
### QuantizationAwareTraining
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).
### Test result
- Batch size = 8
- [Amazon Web Services](https://aws.amazon.com/) c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.
| |INT8|FP32|
|---|:---:|:---:|
| **Throughput (samples/sec)** |24.263|11.202|
| **Accuracy (eval-f1)** |0.9153|0.9042|
| **Model size (MB)** |174|418|
### Load with Intel® Neural Compressor (build from source):
```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/bert-base-uncased-mrpc-int8-qat',
)
```
Notes:
- The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- train_batch_size: 8
- eval_batch_size: 8
- eval_steps: 100
- load_best_model_at_end: True
- metric_for_best_model: f1
- early_stopping_patience = 6
- early_stopping_threshold = 0.001
|