File size: 1,583 Bytes
b11c450
b162079
b11c450
 
b162079
 
 
 
 
b11c450
 
 
 
b162079
b11c450
b162079
b11c450
03cf0db
72920eb
 
b11c450
b162079
 
 
 
b11c450
b162079
 
 
1af1979
b162079
b11c450
8a1d1fd
72920eb
b162079
03cf0db
b162079
72920eb
b162079
 
72920eb
b162079
 
1af1979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language: en
license: apache-2.0
tags:
- text-classfication
- int8
- QuantizationAwareTraining
datasets: 
- mrpc
metrics:
- f1
---

# INT8 BERT base uncased finetuned MRPC

### QuantizationAwareTraining

This is an INT8  PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). 

The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).

### Test result

- Batch size = 8
- [Amazon Web Services](https://aws.amazon.com/) c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.

|   |INT8|FP32|
|---|:---:|:---:|
| **Throughput (samples/sec)**  |24.263|11.202|
| **Accuracy (eval-f1)** |0.9153|0.9042|
| **Model size (MB)**  |174|418|

### Load with Intel® Neural Compressor (build from source):

```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
    'Intel/bert-base-uncased-mrpc-int8-qat',
)
```

Notes:  
 - The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.

### Training hyperparameters
    
The following hyperparameters were used during training:
- learning_rate: 2e-05
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- train_batch_size: 8
- eval_batch_size: 8
- eval_steps: 100
- load_best_model_at_end: True
- metric_for_best_model: f1
- early_stopping_patience = 6
- early_stopping_threshold = 0.001