xinhe commited on
Commit
b162079
1 Parent(s): 6044c0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -42
README.md CHANGED
@@ -1,59 +1,54 @@
1
  ---
2
- language:
3
- - en
4
  license: apache-2.0
5
  tags:
6
- - generated_from_trainer
7
- datasets:
8
- - glue
 
 
9
  metrics:
10
- - accuracy
11
  - f1
12
- model-index:
13
- - name: bert-base-uncased-mrpc
14
- results:
15
- - task:
16
- name: Text Classification
17
- type: text-classification
18
- dataset:
19
- name: GLUE MRPC
20
- type: glue
21
- args: mrpc
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.8602941176470589
26
- - name: F1
27
- type: f1
28
- value: 0.9042016806722689
29
  ---
30
 
31
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
- should probably proofread and complete it, then remove this comment. -->
33
 
34
- # bert-base-uncased-mrpc
35
 
36
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
37
- It achieves the following results on the evaluation set:
38
- - Loss: 0.6978
39
- - Accuracy: 0.8603
40
- - F1: 0.9042
41
- - Combined Score: 0.8822
42
 
43
- ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 2e-05
47
- - train_batch_size: 16
48
- - eval_batch_size: 8
49
- - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 5.0
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- ### Framework versions
 
 
 
 
55
 
56
- - Transformers 4.17.0
57
- - Pytorch 1.10.0+cu102
58
- - Datasets 1.14.0
59
- - Tokenizers 0.11.6
 
 
 
 
 
 
1
  ---
2
+ language: en
 
3
  license: apache-2.0
4
  tags:
5
+ - text-classfication
6
+ - int8
7
+ - QuantizationAwareTraining
8
+ datasets:
9
+ - mrpc
10
  metrics:
 
11
  - f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
+ # INT8 BERT base uncased finetuned MRPC
 
15
 
16
+ ### QuantizationAwareTraining
17
 
18
+ This is an INT8 PyTorch model quantized by [intel/nlp-toolkit](https://github.com/intel/nlp-toolkit) using provider: [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc)
 
 
 
 
 
19
 
20
+ #### Training hyperparameters
21
 
22
  The following hyperparameters were used during training:
23
  - learning_rate: 2e-05
 
 
 
24
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
25
  - lr_scheduler_type: linear
26
+ - num_epochs: 3.0
27
+ - train_batch_size: 8
28
+ - eval_batch_size: 8
29
+ - eval_steps: 100
30
+ - load_best_model_at_end: True
31
+ - metric_for_best_model: f1
32
+ - early_stopping_patience = 6
33
+ - early_stopping_threshold = 0.001
34
+
35
+ ### Test result
36
+
37
+ - Batch size = 8
38
+ - [Amazon Web Services](https://aws.amazon.com/) c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.
39
 
40
+ | |INT8|FP32|
41
+ |---|:---:|:---:|
42
+ | **Throughput (samples/sec)** |24.263|11.202|
43
+ | **Accuracy (eval-accuracy)** |0.9153|0.9042|
44
+ | **Model size (MB)** |174|418|
45
 
46
+ ### Load with nlp-toolkit:
47
+ ```python
48
+ from nlp_toolkit import OptimizedModel
49
+ int8_model = OptimizedModel.from_pretrained(
50
+ 'Intel/distilbert-base-uncased-finetuned-sst-2-english-int8-static',
51
+ )
52
+ ```
53
+ Notes:
54
+ - The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.