|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base-960h |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: finetune_wav2vec2_960h_six_second |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune_wav2vec2_960h_six_second |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8664 |
|
- Wer: 34.7919 |
|
- Cer: 18.1492 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- training_steps: 10000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:--------:|:-----:|:---------------:|:-------:|:-------:| |
|
| 0.9855 | 18.5185 | 1000 | 0.8664 | 34.7919 | 18.1492 | |
|
| 0.5055 | 37.0370 | 2000 | 0.9980 | 34.5251 | 18.1828 | |
|
| 0.3066 | 55.5556 | 3000 | 1.0063 | 33.3511 | 17.2474 | |
|
| 0.2186 | 74.0741 | 4000 | 1.1086 | 32.3372 | 16.9617 | |
|
| 0.1628 | 92.5926 | 5000 | 1.1707 | 31.4835 | 16.5416 | |
|
| 0.1362 | 111.1111 | 6000 | 1.1494 | 31.2700 | 16.4351 | |
|
| 0.1069 | 129.6296 | 7000 | 1.2482 | 31.8837 | 16.4295 | |
|
| 0.1004 | 148.1481 | 8000 | 1.3189 | 31.5635 | 16.9393 | |
|
| 0.0851 | 166.6667 | 9000 | 1.3079 | 30.8965 | 16.3343 | |
|
| 0.0794 | 185.1852 | 10000 | 1.3297 | 30.8698 | 16.1214 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|