ImanNalia's picture
ImanN1/finetune_wav2vec2_960h_six_second
84fd798 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: finetune_wav2vec2_960h_six_second
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_wav2vec2_960h_six_second
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8664
- Wer: 34.7919
- Cer: 18.1492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:--------:|:-----:|:---------------:|:-------:|:-------:|
| 0.9855 | 18.5185 | 1000 | 0.8664 | 34.7919 | 18.1492 |
| 0.5055 | 37.0370 | 2000 | 0.9980 | 34.5251 | 18.1828 |
| 0.3066 | 55.5556 | 3000 | 1.0063 | 33.3511 | 17.2474 |
| 0.2186 | 74.0741 | 4000 | 1.1086 | 32.3372 | 16.9617 |
| 0.1628 | 92.5926 | 5000 | 1.1707 | 31.4835 | 16.5416 |
| 0.1362 | 111.1111 | 6000 | 1.1494 | 31.2700 | 16.4351 |
| 0.1069 | 129.6296 | 7000 | 1.2482 | 31.8837 | 16.4295 |
| 0.1004 | 148.1481 | 8000 | 1.3189 | 31.5635 | 16.9393 |
| 0.0851 | 166.6667 | 9000 | 1.3079 | 30.8965 | 16.3343 |
| 0.0794 | 185.1852 | 10000 | 1.3297 | 30.8698 | 16.1214 |
### Framework versions
- Transformers 4.40.2
- Pytorch 1.12.1+cu116
- Datasets 2.19.1
- Tokenizers 0.19.1