File size: 4,574 Bytes
3885fb1
 
 
 
 
 
 
 
 
 
ffc9ff4
3885fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ccea6f
 
 
 
 
 
 
 
 
 
3885fb1
0ccea6f
3885fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6dfed5
0ccea6f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
language:
- ru
datasets:
- IlyaGusev/saiga_scored
- IlyaGusev/saiga_preferences
license: gemma
---


# Saiga/Gemma2 9B, Russian Gemma-2-based chatbot

Based on [Gemma-2 9B Instruct](https://huggingface.co/google/gemma-2-9b-it).

## Prompt format

Gemma-2 prompt format:
```
<start_of_turn>system
Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им.<end_of_turn>
<start_of_turn>user
Как дела?<end_of_turn>
<start_of_turn>model
Отлично, а у тебя?<end_of_turn>
<start_of_turn>user
Шикарно. Как пройти в библиотеку?<end_of_turn>
<start_of_turn>model
```


## Code example
```python
# Исключительно ознакомительный пример.
# НЕ НАДО ТАК ИНФЕРИТЬ МОДЕЛЬ В ПРОДЕ.
# См. https://github.com/vllm-project/vllm или https://github.com/huggingface/text-generation-inference

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

MODEL_NAME = "IlyaGusev/saiga_gemma2_10b"

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    load_in_8bit=True,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)

inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
for query in inputs:
    prompt = tokenizer.apply_chat_template([{
        "role": "user",
        "content": query
    }], tokenize=False, add_generation_prompt=True)
    data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
    data = {k: v.to(model.device) for k, v in data.items()}
    output_ids = model.generate(**data, generation_config=generation_config)[0]
    output_ids = output_ids[len(data["input_ids"][0]):]
    output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
    print(query)
    print(output)
    print()
    print("==============================")
    print()
```


## Versions
v2:
- [258869abdf95aca1658b069bcff69ea6d2299e7f](https://huggingface.co/IlyaGusev/saiga_gemma2_9b/commit/258869abdf95aca1658b069bcff69ea6d2299e7f)
- Other name: saiga_gemma2_9b_abliterated_sft_m3_d9_abliterated_kto_m1_d13
- SFT dataset config: [sft_d9.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/sft_d9.json)
- SFT model config: [saiga_gemma2_9b_sft_m2.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_sft_m3.json)
- KTO dataset config: [pref_d11.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/pref_d13.json)
- KTO model config: [saiga_gemma2_9b_kto_m1.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_kto_m1.json)
- SFT wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/pjsuik1l)
- KTO wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/dsxwvyyx)

v1:
- [fa63cfe898ee6372419b8e38d35f4c41756d2c22](https://huggingface.co/IlyaGusev/saiga_gemma2_9b/commit/fa63cfe898ee6372419b8e38d35f4c41756d2c22)
- Other name: saiga_gemma2_9b_abliterated_sft_m2_d9_abliterated_kto_m1_d11
- SFT dataset config: [sft_d9.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/sft_d9.json)
- SFT model config: [saiga_gemma2_9b_sft_m2.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_sft_m2.json)
- KTO dataset config: [pref_d11.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/pref_d11.json)
- KTO model config: [saiga_gemma2_9b_kto_m1.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_kto_m1.json)
- SFT wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/af49qmbb)
- KTO wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/5bt7729x)

## Evaluation

* Dataset: https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/tasks.jsonl
* Framework: https://github.com/tatsu-lab/alpaca_eval
* Evaluator: alpaca_eval_cot_gpt4_turbo_fn

Pivot: gemma_2_9b_it_abliterated
| model | length_controlled_winrate |  win_rate | standard_error  | avg_length |
|-----|-----|-----|-----|-----|
|gemma_2_9b_it_abliterated | 50.00 | 50.00 | 0.00  | 1126 |
|saiga_gemma2_9b, v1 | 48.66  | 45.54 | 2.45  | 1066 |
|saiga_gemms2_9b, v2 | 47.77  | 45.30  | 2.45  |  1074 |