Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
datasets:
|
5 |
+
- IlyaGusev/saiga_scored
|
6 |
+
- IlyaGusev/saiga_preferences
|
7 |
+
license: gemma
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Saiga/Gemma2 10B, Russian Gemma-2-based chatbot
|
12 |
+
|
13 |
+
Based on [Gemma-2 9B Instruct](https://huggingface.co/google/gemma-2-9b-it).
|
14 |
+
|
15 |
+
## Prompt format
|
16 |
+
|
17 |
+
Gemma-2 prompt format:
|
18 |
+
```
|
19 |
+
<start_of_turn>system
|
20 |
+
Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им.<end_of_turn>
|
21 |
+
<start_of_turn>user
|
22 |
+
Как дела?<end_of_turn>
|
23 |
+
<start_of_turn>model
|
24 |
+
Отлично, а у тебя?<end_of_turn>
|
25 |
+
<start_of_turn>user
|
26 |
+
Шикарно. Как пройти в библиотеку?<end_of_turn>
|
27 |
+
<start_of_turn>model
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
## Code example
|
32 |
+
```python
|
33 |
+
# Исключительно ознакомительный пример.
|
34 |
+
# НЕ НАДО ТАК ИНФЕРИТЬ МОДЕЛЬ В ПРОДЕ.
|
35 |
+
# См. https://github.com/vllm-project/vllm или https://github.com/huggingface/text-generation-inference
|
36 |
+
|
37 |
+
import torch
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
39 |
+
|
40 |
+
MODEL_NAME = "IlyaGusev/saiga_gemma2_10b"
|
41 |
+
DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
42 |
+
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
MODEL_NAME,
|
45 |
+
load_in_8bit=True,
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
device_map="auto"
|
48 |
+
)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
52 |
+
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
|
53 |
+
print(generation_config)
|
54 |
+
|
55 |
+
inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"]
|
56 |
+
for query in inputs:
|
57 |
+
prompt = tokenizer.apply_chat_template([{
|
58 |
+
"role": "system",
|
59 |
+
"content": DEFAULT_SYSTEM_PROMPT
|
60 |
+
}, {
|
61 |
+
"role": "user",
|
62 |
+
"content": query
|
63 |
+
}], tokenize=False, add_generation_prompt=True)
|
64 |
+
data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
65 |
+
data = {k: v.to(model.device) for k, v in data.items()}
|
66 |
+
output_ids = model.generate(**data, generation_config=generation_config)[0]
|
67 |
+
output_ids = output_ids[len(data["input_ids"][0]):]
|
68 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
69 |
+
print(query)
|
70 |
+
print(output)
|
71 |
+
print()
|
72 |
+
print("==============================")
|
73 |
+
print()
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
## Versions
|
78 |
+
v1:
|
79 |
+
- [fa63cfe898ee6372419b8e38d35f4c41756d2c22](https://huggingface.co/IlyaGusev/saiga_llama3_8b/commit/fa63cfe898ee6372419b8e38d35f4c41756d2c22)
|
80 |
+
- Other name: saiga_gemma2_9b_abliterated_sft_m2_d9_abliterated_kto_m1_d11
|
81 |
+
- SFT dataset config: [sft_d9.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/sft_d9.json)
|
82 |
+
- SFT model config: [saiga_gemma2_9b_sft_m2.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_sft_m2.json)
|
83 |
+
- KTO dataset config: [pref_d11.json](https://github.com/IlyaGusev/saiga/blob/main/configs/datasets/pref_d11.json)
|
84 |
+
- KTO model config: [saiga_gemma2_9b_kto_m1.json](https://github.com/IlyaGusev/saiga/blob/main/configs/models/saiga_gemma2_9b_kto_m1.json)
|
85 |
+
- SFT wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/af49qmbb)
|
86 |
+
- KTO wandb: [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/5bt7729x)
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+
* Dataset: https://github.com/IlyaGusev/rulm/blob/master/self_instruct/data/tasks.jsonl
|
91 |
+
* Framework: https://github.com/tatsu-lab/alpaca_eval
|
92 |
+
* Evaluator: alpaca_eval_cot_gpt4_turbo_fn
|
93 |
+
|
94 |
+
Pivot: gemma_2_9b_it_abliterated
|
95 |
+
| model | length_controlled_winrate | win_rate | standard_error | avg_length |
|
96 |
+
|-----|-----|-----|-----|-----|
|
97 |
+
|gemma_2_9b_it_abliterated_v2 | 50.00 | 50.00 | 0.00 | 1126 |
|
98 |
+
|saiga_gemma2_10b, v1 | 48.66 | 45.54 | 2.45 | 1066 |
|