rpr_7b / README.md
IlyaGusev's picture
Update README.md
4d70d1b
|
raw
history blame
2.89 kB
---
datasets:
- IlyaGusev/gpt_roleplay_realm
language:
- en
pipeline_tag: text-generation
---
LLaMA 7B fine-tuned on the English part of the `gpt_roleplay_realm` dataset.
Code example:
```
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_NAME = "IlyaGusev/rpr_7b"
DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n"
class Conversation:
def __init__(
self,
system_prompt,
message_template=DEFAULT_MESSAGE_TEMPLATE,
start_token_id=1,
bot_token_id=9225
):
self.message_template = message_template
self.start_token_id = start_token_id
self.bot_token_id = bot_token_id
self.messages = [{
"role": "system",
"content": system_prompt
}]
def get_start_token_id(self):
return self.start_token_id
def get_bot_token_id(self):
return self.bot_token_id
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def add_bot_message(self, message):
self.messages.append({
"role": "bot",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += tokenizer.decode([self.start_token_id, self.bot_token_id])
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt")
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(**data,generation_config=generation_config)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
config = PeftConfig.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(
model,
MODEL_NAME,
torch_dtype=torch.float16
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
print(generation_config)
system_prompt = "You are Chiharu Yamada. Chiharu Yamada is a young, computer engineer-nerd with a knack for problem solving and a passion for technology."
conversation = Conversation(system_prompt=system_prompt)
for inp in inputs:
inp = input()
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
conversation.add_bot_message(output)
print(output)
```