IlluminatiPudding commited on
Commit
10d9347
·
1 Parent(s): 580a50b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -168.30 +/- 27.60
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 234.76 +/- 21.58
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6fee3ec310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6fee3ec3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6fee3ec430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6fee3ec4c0>", "_build": "<function ActorCriticPolicy._build at 0x7c6fee3ec550>", "forward": "<function ActorCriticPolicy.forward at 0x7c6fee3ec5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6fee3ec670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6fee3ec700>", "_predict": "<function ActorCriticPolicy._predict at 0x7c6fee3ec790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6fee3ec820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6fee3ec8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6fee3ec940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6fee381b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16777216, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697171386122707374, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaZ1b03yR4+eLxmvX47r7+OJiC+soe+vQAAAAAAAAAAzUFavbB+mT/Rawy++EoDv84CgztNW+S9AAAAAAAAAABzZIW9r9MvP6KGkb2NgnS/n++YvYdgMr4AAAAAAAAAAHPlSj6riY8/8g5XPxvqOr+QFaK+AO6svgAAAAAAAAAAM4uJvPgDsT9gobK+ELyavhEGBz3M4CA+AAAAAAAAAACamjI9ly9GPxzFJr0JPG+/soj0PijjgD4AAAAAAAAAAAAEFz4v8yY/vDucPu00hL8Qe9O9W4wlvgAAAAAAAAAAzcFmvTLVoT8ciYe+NVC2vpnjZD0GN4g9AAAAAAAAAAAwuMw+M2VaP+0iBj85JHy/3T7UvZ64GT4AAAAAAAAAAGbFXz4qA4k/8OdFP3cxT796A4G+Yno2vgAAAAAAAAAAmjs2vPDZtj+yR169/K6GvWtEUD16rO48AAAAAAAAAABaBLw+651jP5IjUT9VW1a/QcpJvr7+bDwAAAAAAAAAAMBCtj0I6tI+cdQQPszSpL/7NO89wX3DPAAAAAAAAAAASnVovrS9gz8q0xe/X+hZv2k1Cz9QELM+AAAAAAAAAACzaLq9lgm9P+tISL+Gbm4+ecmbPchGVj0AAAAAAAAAANpXUr5mw6g/2YOIvZeyDb/qzmq+Hj/fvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.777216, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwH6Ls5wOvuCMAWyUS1uMAXSUR0C13THRw6yTdX2UKGgGR8B4V+FEiMYNaAdLbGgIR0C13TJZGKAKdX2UKGgGR8Bxl/VBlcyFaAdLVWgIR0C13TTn7pFDdX2UKGgGR8BfLvaL4vexaAdLQGgIR0C13TSsXBP9dX2UKGgGR8B08l5GBnSOaAdLhGgIR0C13Twlv60qdX2UKGgGR8BWNxwQ176YaAdLcmgIR0C13USQT238dX2UKGgGR8BztfrjYI0JaAdLZ2gIR0C13UYxk/bCdX2UKGgGR8CAGTQKrq+raAdLbGgIR0C13VMo+fRNdX2UKGgGR8BR5IGpuMuOaAdLT2gIR0C13VMm8dxRdX2UKGgGR8BTmwIhQm/naAdLRWgIR0C13WHC4z7/dX2UKGgGR8BSudQ40dilaAdLRGgIR0C13WrYbsF/dX2UKGgGR8BgrpSYPXkHaAdLQ2gIR0C13XCD7IkrdX2UKGgGR8BZvb+kxh2GaAdLcWgIR0C13W85Ke05dX2UKGgGR8Bi2JIJ7b+MaAdLY2gIR0C13XIjKPn0dX2UKGgGR8BbcQv6CUX6aAdLR2gIR0C13XZlar3kdX2UKGgGR8BOs2xQizLPaAdLQmgIR0C13Xll9SdfdX2UKGgGR8BnuOPNmlImaAdLbWgIR0C13XVSS/0vdX2UKGgGR8BZZvbTMJQdaAdLSGgIR0C13Xc5S3spdX2UKGgGR8B03c9X9zfaaAdLaGgIR0C13YG16Vt5dX2UKGgGR8Buu7O7g88taAdLXWgIR0C13YOxjawmdX2UKGgGR8BdB5qASWZ7aAdLSWgIR0C13Yed9UjtdX2UKGgGR8BTTqy0KJEZaAdLOmgIR0C13YcTi83/dX2UKGgGR8BMw4/FBIFvaAdLY2gIR0C13YxaouPFdX2UKGgGR8B7f9zeXRgJaAdLTWgIR0C13ZbMgU1ydX2UKGgGR8CAdJF72L5zaAdLaWgIR0C13aaMm4RVdX2UKGgGR8BQlpLAYYR/aAdLP2gIR0C13a/mPo3adX2UKGgGR8BleR3HJcPfaAdLSWgIR0C13bFrEcbSdX2UKGgGR8BiBIjrzGxVaAdLRWgIR0C13bfgWJrMdX2UKGgGR8Bei0nogV45aAdLSGgIR0C13bfdIoVmdX2UKGgGR8BKztYjjaPCaAdLT2gIR0C13boESuhcdX2UKGgGR8Boo8xh2GIsaAdLaWgIR0C13cGTkhicdX2UKGgGR8BkaRfUnXumaAdLYGgIR0C13cfugHu7dX2UKGgGR8BffkT6BRQ8aAdLSWgIR0C13cbeQ+2WdX2UKGgGR8Bd9XIQvpQlaAdLS2gIR0C13cbW7OE/dX2UKGgGR8BdkKk2xY7raAdLRWgIR0C13cxNyo4udX2UKGgGR8B26fbGm1pkaAdLVWgIR0C13dWmYSg5dX2UKGgGR8BiqZOzposaaAdLdmgIR0C13dZKWcBmdX2UKGgGR8BoFAcWCVbBaAdLRmgIR0C13dl6qsEJdX2UKGgGR8BVvT/uLJjlaAdLbmgIR0C13dlfeDWcdX2UKGgGR8AzaW/8EV32aAdLaWgIR0C13ecQEpy7dX2UKGgGR8BoRaOo5xR3aAdLU2gIR0C13fHVoYeldX2UKGgGR8BbIBnvlU6xaAdLUGgIR0C13fhlYlpodX2UKGgGR8BiuuiaiKziaAdLUWgIR0C13fq/EfkndX2UKGgGR8BdjL6DXe3yaAdLS2gIR0C13gxFmWdFdX2UKGgGR8ByzJaQmu1XaAdLWGgIR0C13gp0bLlndX2UKGgGR8BQmQC4jKPoaAdLX2gIR0C13g7yMDOkdX2UKGgGR8B5UVm4AjptaAdLYWgIR0C13hCq6vq1dX2UKGgGR8BfT9rj5sTGaAdLUmgIR0C13hIuwosqdX2UKGgGR8BT5H+ERJ2/aAdLVWgIR0C13hTpPhybdX2UKGgGR8BpLrHAAQxvaAdLTGgIR0C13h+hwl0HdX2UKGgGR8BJEc+7lJYlaAdLRGgIR0C13ib2g398dX2UKGgGR8BcQIo/iYLLaAdLXGgIR0C13isy8BdVdX2UKGgGR8B5onhHbypaaAdLcGgIR0C13il0PpY+dX2UKGgGR8BRzKgAZKnOaAdLO2gIR0C13jPpt78fdX2UKGgGR8BxRDfNzKcNaAdLeGgIR0C13jyBTXJ6dX2UKGgGR8Beel27nPmgaAdLaWgIR0C13jwMDwH8dX2UKGgGR8BeaN8Z1mrbaAdLT2gIR0C13kR7/n4gdX2UKGgGR8BwGAq3EyckaAdLemgIR0C13kjvuw5edX2UKGgGR8BmbVcpsoDxaAdLRmgIR0C13k4Gt6omdX2UKGgGR8Bgkd0zTF2naAdLa2gIR0C13lgt8NQTdX2UKGgGR8BRzyCe2/i6aAdLUWgIR0C13lpJoTPCdX2UKGgGR8BaEfYe1a4daAdLS2gIR0C13lx5TqB3dX2UKGgGR8B7bpMYdhiLaAdLUGgIR0C13l6RlpXZdX2UKGgGR8BP6ogeRxLkaAdLQ2gIR0C13l/HLidbdX2UKGgGR8Bn4T3sXzlLaAdLR2gIR0C13modZJTVdX2UKGgGR8B9GClO45LiaAdLZmgIR0C13m9EXtSidX2UKGgGR8Bvv0ahpQDWaAdLRWgIR0C13nNwNsnBdX2UKGgGR8B12vLW7OE/aAdLcGgIR0C13nmlQ/HHdX2UKGgGR8BZmnzDn/1haAdLVmgIR0C13nmqtHQQdX2UKGgGR8Ba1t9H+ZPVaAdLU2gIR0C13odP+GXYdX2UKGgGR8Bh84arFOwgaAdLbGgIR0C13o7127nQdX2UKGgGR8BYGFYuCf6HaAdLXWgIR0C13pFdszl+dX2UKGgGR8BdSsB2fTTfaAdLT2gIR0C13pDCxeLOdX2UKGgGR8BwzF/0/W1/aAdLRWgIR0C13pXaJyhjdX2UKGgGR8Bpze+sYEW7aAdLU2gIR0C13phSDRMOdX2UKGgGR8BcexRQ79ycaAdLRWgIR0C13pwTufEodX2UKGgGR8BjuBtrKvFFaAdLUWgIR0C13qR1cMVldX2UKGgGR8Bgc1fJFLFoaAdLQ2gIR0C13rCvovBadX2UKGgGR8BiSXQpnYg8aAdLd2gIR0C13rGOdXkpdX2UKGgGR8Bx976+FlCkaAdLX2gIR0C13rajJuEVdX2UKGgGR8B2gCpqASWaaAdLWGgIR0C13r+jM3ZPdX2UKGgGR8B34G1IAfdRaAdLb2gIR0C13r9xMnJDdX2UKGgGR8BXYEFbFCLNaAdLR2gIR0C13tCyD7IldX2UKGgGR8BnayG+K0laaAdLbmgIR0C13s6/ub7TdX2UKGgGR8B8F2DtgKF7aAdLYmgIR0C13tOpsGgSdX2UKGgGR8BYy7VvuPV/aAdLUGgIR0C13tGs/6frdX2UKGgGR8BxcW2JBPbgaAdLV2gIR0C13uFN5+pgdX2UKGgGR8BgjcDbJwKjaAdLW2gIR0C13uQwfyPNdX2UKGgGR8BqiIlt0mtyaAdLWGgIR0C13u1AAyVOdX2UKGgGR8BX+J4GD+R6aAdLYWgIR0C13u9s7+1jdX2UKGgGR8BeAOskpqh2aAdLYWgIR0C13vIcaOxTdX2UKGgGR8BeO3668QI2aAdLR2gIR0C13vIbCJoCdX2UKGgGR8B0BCvIOpbVaAdLiGgIR0C13vZLh73PdX2UKGgGR8BigEdvKlpHaAdLV2gIR0C13wXdsSCfdX2UKGgGR8Bd4Y2sJY1YaAdLUWgIR0C13woIWxhVdX2UKGgGR8B6qyARTS9eaAdLVGgIR0C13wxjz7MxdX2UKGgGR8BqrpE0BOpLaAdLcWgIR0C13w3wkPc0dX2UKGgGR8Boubrqt5lfaAdLSmgIR0C13xLwrlNldX2UKGgGR8ByhyDQJHAiaAdLbGgIR0C13xTpLVWkdX2UKGgGR8Bp5BWaMJhOaAdLP2gIR0C13x/crRShdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1048576, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x785507947f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785507758040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855077580d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785507758160>", "_build": "<function ActorCriticPolicy._build at 0x7855077581f0>", "forward": "<function ActorCriticPolicy.forward at 0x785507758280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x785507758310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855077583a0>", "_predict": "<function ActorCriticPolicy._predict at 0x785507758430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855077584c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785507758550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7855077585e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7855078f5140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702297928282337284, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Ccb0F76M8M/eHue4h9b020FE8Dm8jPQAAAAAAAAAAGlk7PcNpVro7q2g7BmabNg83Rzr+O4a6AACAPwAAgD/NpVc9POORPqAiib7WKIa+3Zv8vWURfTwAAAAAAAAAAM3Y37xcIw26ObCUuU2Xm7SVHjK6k7SqOAAAgD8AAIA/xsc9vjarG7xT3Pw4HKNoNuiSij12The4AACAPwAAgD/AHOu9TMylP5ve7r5fc+W+/BvdvXsANr4AAAAAAAAAAGA7Gb7tfEo/ldM7vcGun74jmaO9+d03PQAAAAAAAAAAZqGiPVynH7q/LIm7D4M/tofPMLvSO6E6AACAPwAAAACaC9289rxeuqIqijqiSaU0bBSBOvmfoLkAAIA/AACAPw3Upj1SsMm5FkKAu3CzdjinhYQ531aJOQAAgD8AAIA/wGO/vdFCvD0xgZa9e8rQvW+hlL3OiEu9AAAAAAAAAABmbTO9KeBRutWY7LpNEYu1pgO5OavCCToAAIA/AACAP8BuiT2Fs+i5bhOIup/4kjUpQb65m1KcOQAAgD8AAIA/GjdKvbjmlbkSKC874pNUtrQTsrvdz1C6AACAPwAAgD8N6aQ9g1w0vMtxeTwSduK8LKmkPQ85uz0AAIA/AACAP1p1tL2P/ju6Os+eOb7RBTZOjE26Dw22uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFafR/mT1WMAWyUTegDjAF0lEdAkzjZ0CA+ZHV9lChoBkdAX/hQizLOiWgHTegDaAhHQJM6Dwpe/pN1fZQoaAZHQFoYLK3d9DxoB03oA2gIR0CTPDQ8fV7QdX2UKGgGR0BkyxA+pwS8aAdN6ANoCEdAkzx9pyp71XV9lChoBkdAZiMMhouf3GgHTegDaAhHQJNBBLg4wRJ1fZQoaAZHQFkkamGdqcpoB03oA2gIR0CTRUNyHVPOdX2UKGgGR0AktV6NVBD5aAdL0GgIR0CTTJKneiztdX2UKGgGR0BiQJI+W4ViaAdN6ANoCEdAk1YtfTkQw3V9lChoBkdAXpmE0zj3mGgHTegDaAhHQJNd0KD01651fZQoaAZHQGMfEe6qbSZoB03oA2gIR0CTZs9+w1R+dX2UKGgGR0BgllmDlHSXaAdN6ANoCEdAk303scABDHV9lChoBkdAYcW6q814xGgHTegDaAhHQJOAZjYqXnh1fZQoaAZHQGOUYdQwbl1oB03oA2gIR0CThJolUp/gdX2UKGgGR0Bg13zasZHeaAdN6ANoCEdAk4vwcDKYA3V9lChoBkdAX71+AmReTmgHTegDaAhHQJOM3yMDOkd1fZQoaAZHQGGVxYA80UJoB03oA2gIR0CTkU1hb4ahdX2UKGgGR0BhnOac7QsxaAdN6ANoCEdAk5QOFg2If3V9lChoBkdAYNQdV/+bVmgHTegDaAhHQJOVf2xptaZ1fZQoaAZHQFpPnA6+36RoB03oA2gIR0CTmE6U7jkudX2UKGgGR0BeRp1ie/YbaAdN6ANoCEdAk5iHAmAskXV9lChoBkdAYSkox59mYmgHTegDaAhHQJOcLw+dK/V1fZQoaAZHQGL0Tu4PPLRoB03oA2gIR0CTn1iaiKzidX2UKGgGR0A4y1nM+u/2aAdL5mgIR0CTo95GBnSOdX2UKGgGR0BlUgVVPva2aAdN6ANoCEdAk6TJ0nw5N3V9lChoBkdAW7PLOiWVvGgHTegDaAhHQJOtjcIqslt1fZQoaAZHQF/KSWqtHQRoB03oA2gIR0CTt03M6ij+dX2UKGgGR0BiOqCxu89PaAdN6ANoCEdAk8Ifi97F9HV9lChoBkdAZLJg88s+V2gHTegDaAhHQJPWF/BnBcl1fZQoaAZHQGAoUkWykbhoB03oA2gIR0CT2Fxi5NGmdX2UKGgGR0BjVs+V1Oj7aAdN6ANoCEdAk9tIqwyIpHV9lChoBkdAYr17LMcIaGgHTegDaAhHQJQLq+i8Fpx1fZQoaAZHQGLSA9vCMxZoB03oA2gIR0CUDKTl1bJPdX2UKGgGR0BgkAvN/vv0aAdN6ANoCEdAlBERFqi48XV9lChoBkdAYmUBZpztC2gHTegDaAhHQJQVJswco6V1fZQoaAZHQFg+HCoCMgloB03oA2gIR0CUF/UWEbo9dX2UKGgGR0BZJRV+7UXpaAdN6ANoCEdAlBgx1cMVlHV9lChoBkdAWViyMUAT7GgHTegDaAhHQJQb15+pfhN1fZQoaAZHQCEQYrJ8v25oB0vzaAhHQJQdQHmig011fZQoaAZHQGFsUBOpKjBoB03oA2gIR0CUHu2exwAEdX2UKGgGR0BecCCJ40MxaAdN6ANoCEdAlCPSXlbNbHV9lChoBkdAZoUf7rLQomgHTegDaAhHQJQk+NS619h1fZQoaAZHQFds+j/MnqpoB03oA2gIR0CULrK+i8FqdX2UKGgGR0BhE8unMt9QaAdN6ANoCEdAlDYGG7Bfr3V9lChoBkdAYtlrftQbdmgHTegDaAhHQJQ+OExqO951fZQoaAZHQGUVdR77bcpoB03oA2gIR0CUUyCEpRXPdX2UKGgGR0BhWivHLidbaAdN6ANoCEdAlFVa3/givHV9lChoBkdAYCd2K2rn1WgHTegDaAhHQJRYcGSpzcR1fZQoaAZHQGRWHAZbY9RoB03oA2gIR0CUYbQDFId3dX2UKGgGR0BbYlx82JizaAdN6ANoCEdAlGgDJdSl33V9lChoBkdAZ1Vvl2eQMmgHTegDaAhHQJRtldD6WPd1fZQoaAZHQFn/tzCDVYpoB03oA2gIR0CUcLdMCcPOdX2UKGgGR0BjhwEt/WlNaAdN6ANoCEdAlHDuOXE61nV9lChoBkdAW24HkcS5AmgHTegDaAhHQJR098ohIOJ1fZQoaAZHQGPAmf5DZ15oB03oA2gIR0CUdnRm9QGfdX2UKGgGR0Bit4ddVvMsaAdN6ANoCEdAlHheLWI42nV9lChoBkdAY3SQ2/BWP2gHTegDaAhHQJR8v4BV+7V1fZQoaAZHQGFJCv5gw49oB03oA2gIR0CUfYPK+zt1dX2UKGgGR0BHfHerMkhSaAdNHgFoCEdAlISYrOJLunV9lChoBkdAWhWG9Htnf2gHTegDaAhHQJSFJEPUayd1fZQoaAZHQFt+aNdZ7oloB03oA2gIR0CUi2WrfcesdX2UKGgGR0BiIkRe1KGtaAdN6ANoCEdAlJR0gB91EHV9lChoBkdAMOpqASWZ7WgHS+5oCEdAlJpxFNL13HV9lChoBkdAYjo482aUimgHTegDaAhHQJStvifg75p1fZQoaAZHQGcutkOI68xoB03oA2gIR0CUr/cPOIIodX2UKGgGR0Bfx9Sde6ZqaAdN6ANoCEdAlLMJuqFRHnV9lChoBkdAXewvVVghKWgHTegDaAhHQJS6wDs+mnB1fZQoaAZHQGM5ArpaA4JoB03oA2gIR0CU6HKMNtqIdX2UKGgGR0BhcyKBNEgGaAdN6ANoCEdAlOy4MWoFV3V9lChoBkdAY2gPeYUnHGgHTegDaAhHQJTv5HSWqtJ1fZQoaAZHQGQmQA2hqTNoB03oA2gIR0CU9BCxNZeSdX2UKGgGR0Bh5T9VFQVLaAdN6ANoCEdAlPWXL7oB73V9lChoBkdAZXja/yoXK2gHTegDaAhHQJT3cht+Csh1fZQoaAZHQGLlzltCRfZoB03oA2gIR0CU/AiKBNEgdX2UKGgGR0BkTvpwCKaYaAdN6ANoCEdAlPzuQlruY3V9lChoBkdAYS7oexOclWgHTegDaAhHQJUEq7iADq51fZQoaAZHQGVXpP69CeFoB03oA2gIR0CVC9ofCAMEdX2UKGgGR0BiumbI91U3aAdN6ANoCEdAlRdu7tiQT3V9lChoBkdAX2mNZNfw7WgHTegDaAhHQJUcdY5ksjF1fZQoaAZHQGY4Ak1Mue1oB03oA2gIR0CVK9bY9Pk8dX2UKGgGR0BhcXjjrAxjaAdN6ANoCEdAlS4I2fkFOnV9lChoBkdAYuMvGp++d2gHTegDaAhHQJUxBa6jFhp1fZQoaAZHQGIxC1y/9HdoB03oA2gIR0CVOImzSkTIdX2UKGgGR0Bfkb6Hj6vaaAdN6ANoCEdAlT0yRjjJdXV9lChoBkdAYMkRnvlU62gHTegDaAhHQJVBcsd1dPd1fZQoaAZHQGNeqMFUyYZoB03oA2gIR0CVRX6/qPfbdX2UKGgGR0Blr7HU+cH4aAdN6ANoCEdAlUtKUqx1PnV9lChoBkdAYx9y5I6KcmgHTegDaAhHQJVNc2LpA2R1fZQoaAZHQEwl4KQaJhxoB03oA2gIR0CVUBucc2itdX2UKGgGR0BlOHzJ6po9aAdN6ANoCEdAlVW/h/Aj6nV9lChoBkdAYBOLhJiAlWgHTegDaAhHQJVWlirksBh1fZQoaAZHQFyzyuIRAbBoB03oA2gIR0CVXk78Nx2jdX2UKGgGR0BfgYpx3mmtaAdN6ANoCEdAlWR287IT5HV9lChoBkdAYM9hd+ocaWgHTegDaAhHQJVsmZjQRf51fZQoaAZHQGKmpBX0XgtoB03oA2gIR0CVcGcBU70WdX2UKGgGR0BjavBguyu7aAdN6ANoCEdAlYDoAsCkoHV9lChoBkdATr5EH+qBE2gHS+hoCEdAlYJ2diDujXV9lChoBkdAYxfF0gbIcWgHTegDaAhHQJWD60ojOcF1fZQoaAZHQGGgxK6FueloB03oA2gIR0CVh92Dg62fdX2UKGgGR0BgL+CNCJGfaAdN6ANoCEdAlZBfyLAHmnV9lChoBkdAXdLxPO6d2GgHTegDaAhHQJWUwA3kxRF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:76a1ed1e4585a36668ef82de435901e0b6287f3c8fbeb312c9a104bb1cb5d25a
3
- size 146103
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bee3ab57e8767c94d8ca7bac0f9ca34fbe7a64f5b1653947fa2248515680d19
3
+ size 147539
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6fee3ec310>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6fee3ec3a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6fee3ec430>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6fee3ec4c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7c6fee3ec550>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7c6fee3ec5e0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6fee3ec670>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6fee3ec700>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7c6fee3ec790>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6fee3ec820>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6fee3ec8b0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6fee3ec940>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7c6fee381b40>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 16777216,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1697171386122707374,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaZ1b03yR4+eLxmvX47r7+OJiC+soe+vQAAAAAAAAAAzUFavbB+mT/Rawy++EoDv84CgztNW+S9AAAAAAAAAABzZIW9r9MvP6KGkb2NgnS/n++YvYdgMr4AAAAAAAAAAHPlSj6riY8/8g5XPxvqOr+QFaK+AO6svgAAAAAAAAAAM4uJvPgDsT9gobK+ELyavhEGBz3M4CA+AAAAAAAAAACamjI9ly9GPxzFJr0JPG+/soj0PijjgD4AAAAAAAAAAAAEFz4v8yY/vDucPu00hL8Qe9O9W4wlvgAAAAAAAAAAzcFmvTLVoT8ciYe+NVC2vpnjZD0GN4g9AAAAAAAAAAAwuMw+M2VaP+0iBj85JHy/3T7UvZ64GT4AAAAAAAAAAGbFXz4qA4k/8OdFP3cxT796A4G+Yno2vgAAAAAAAAAAmjs2vPDZtj+yR169/K6GvWtEUD16rO48AAAAAAAAAABaBLw+651jP5IjUT9VW1a/QcpJvr7+bDwAAAAAAAAAAMBCtj0I6tI+cdQQPszSpL/7NO89wX3DPAAAAAAAAAAASnVovrS9gz8q0xe/X+hZv2k1Cz9QELM+AAAAAAAAAACzaLq9lgm9P+tISL+Gbm4+ecmbPchGVj0AAAAAAAAAANpXUr5mw6g/2YOIvZeyDb/qzmq+Hj/fvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -15.777216,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwH6Ls5wOvuCMAWyUS1uMAXSUR0C13THRw6yTdX2UKGgGR8B4V+FEiMYNaAdLbGgIR0C13TJZGKAKdX2UKGgGR8Bxl/VBlcyFaAdLVWgIR0C13TTn7pFDdX2UKGgGR8BfLvaL4vexaAdLQGgIR0C13TSsXBP9dX2UKGgGR8B08l5GBnSOaAdLhGgIR0C13Twlv60qdX2UKGgGR8BWNxwQ176YaAdLcmgIR0C13USQT238dX2UKGgGR8BztfrjYI0JaAdLZ2gIR0C13UYxk/bCdX2UKGgGR8CAGTQKrq+raAdLbGgIR0C13VMo+fRNdX2UKGgGR8BR5IGpuMuOaAdLT2gIR0C13VMm8dxRdX2UKGgGR8BTmwIhQm/naAdLRWgIR0C13WHC4z7/dX2UKGgGR8BSudQ40dilaAdLRGgIR0C13WrYbsF/dX2UKGgGR8BgrpSYPXkHaAdLQ2gIR0C13XCD7IkrdX2UKGgGR8BZvb+kxh2GaAdLcWgIR0C13W85Ke05dX2UKGgGR8Bi2JIJ7b+MaAdLY2gIR0C13XIjKPn0dX2UKGgGR8BbcQv6CUX6aAdLR2gIR0C13XZlar3kdX2UKGgGR8BOs2xQizLPaAdLQmgIR0C13Xll9SdfdX2UKGgGR8BnuOPNmlImaAdLbWgIR0C13XVSS/0vdX2UKGgGR8BZZvbTMJQdaAdLSGgIR0C13Xc5S3spdX2UKGgGR8B03c9X9zfaaAdLaGgIR0C13YG16Vt5dX2UKGgGR8Buu7O7g88taAdLXWgIR0C13YOxjawmdX2UKGgGR8BdB5qASWZ7aAdLSWgIR0C13Yed9UjtdX2UKGgGR8BTTqy0KJEZaAdLOmgIR0C13YcTi83/dX2UKGgGR8BMw4/FBIFvaAdLY2gIR0C13YxaouPFdX2UKGgGR8B7f9zeXRgJaAdLTWgIR0C13ZbMgU1ydX2UKGgGR8CAdJF72L5zaAdLaWgIR0C13aaMm4RVdX2UKGgGR8BQlpLAYYR/aAdLP2gIR0C13a/mPo3adX2UKGgGR8BleR3HJcPfaAdLSWgIR0C13bFrEcbSdX2UKGgGR8BiBIjrzGxVaAdLRWgIR0C13bfgWJrMdX2UKGgGR8Bei0nogV45aAdLSGgIR0C13bfdIoVmdX2UKGgGR8BKztYjjaPCaAdLT2gIR0C13boESuhcdX2UKGgGR8Boo8xh2GIsaAdLaWgIR0C13cGTkhicdX2UKGgGR8BkaRfUnXumaAdLYGgIR0C13cfugHu7dX2UKGgGR8BffkT6BRQ8aAdLSWgIR0C13cbeQ+2WdX2UKGgGR8Bd9XIQvpQlaAdLS2gIR0C13cbW7OE/dX2UKGgGR8BdkKk2xY7raAdLRWgIR0C13cxNyo4udX2UKGgGR8B26fbGm1pkaAdLVWgIR0C13dWmYSg5dX2UKGgGR8BiqZOzposaaAdLdmgIR0C13dZKWcBmdX2UKGgGR8BoFAcWCVbBaAdLRmgIR0C13dl6qsEJdX2UKGgGR8BVvT/uLJjlaAdLbmgIR0C13dlfeDWcdX2UKGgGR8AzaW/8EV32aAdLaWgIR0C13ecQEpy7dX2UKGgGR8BoRaOo5xR3aAdLU2gIR0C13fHVoYeldX2UKGgGR8BbIBnvlU6xaAdLUGgIR0C13fhlYlpodX2UKGgGR8BiuuiaiKziaAdLUWgIR0C13fq/EfkndX2UKGgGR8BdjL6DXe3yaAdLS2gIR0C13gxFmWdFdX2UKGgGR8ByzJaQmu1XaAdLWGgIR0C13gp0bLlndX2UKGgGR8BQmQC4jKPoaAdLX2gIR0C13g7yMDOkdX2UKGgGR8B5UVm4AjptaAdLYWgIR0C13hCq6vq1dX2UKGgGR8BfT9rj5sTGaAdLUmgIR0C13hIuwosqdX2UKGgGR8BT5H+ERJ2/aAdLVWgIR0C13hTpPhybdX2UKGgGR8BpLrHAAQxvaAdLTGgIR0C13h+hwl0HdX2UKGgGR8BJEc+7lJYlaAdLRGgIR0C13ib2g398dX2UKGgGR8BcQIo/iYLLaAdLXGgIR0C13isy8BdVdX2UKGgGR8B5onhHbypaaAdLcGgIR0C13il0PpY+dX2UKGgGR8BRzKgAZKnOaAdLO2gIR0C13jPpt78fdX2UKGgGR8BxRDfNzKcNaAdLeGgIR0C13jyBTXJ6dX2UKGgGR8Beel27nPmgaAdLaWgIR0C13jwMDwH8dX2UKGgGR8BeaN8Z1mrbaAdLT2gIR0C13kR7/n4gdX2UKGgGR8BwGAq3EyckaAdLemgIR0C13kjvuw5edX2UKGgGR8BmbVcpsoDxaAdLRmgIR0C13k4Gt6omdX2UKGgGR8Bgkd0zTF2naAdLa2gIR0C13lgt8NQTdX2UKGgGR8BRzyCe2/i6aAdLUWgIR0C13lpJoTPCdX2UKGgGR8BaEfYe1a4daAdLS2gIR0C13lx5TqB3dX2UKGgGR8B7bpMYdhiLaAdLUGgIR0C13l6RlpXZdX2UKGgGR8BP6ogeRxLkaAdLQ2gIR0C13l/HLidbdX2UKGgGR8Bn4T3sXzlLaAdLR2gIR0C13modZJTVdX2UKGgGR8B9GClO45LiaAdLZmgIR0C13m9EXtSidX2UKGgGR8Bvv0ahpQDWaAdLRWgIR0C13nNwNsnBdX2UKGgGR8B12vLW7OE/aAdLcGgIR0C13nmlQ/HHdX2UKGgGR8BZmnzDn/1haAdLVmgIR0C13nmqtHQQdX2UKGgGR8Ba1t9H+ZPVaAdLU2gIR0C13odP+GXYdX2UKGgGR8Bh84arFOwgaAdLbGgIR0C13o7127nQdX2UKGgGR8BYGFYuCf6HaAdLXWgIR0C13pFdszl+dX2UKGgGR8BdSsB2fTTfaAdLT2gIR0C13pDCxeLOdX2UKGgGR8BwzF/0/W1/aAdLRWgIR0C13pXaJyhjdX2UKGgGR8Bpze+sYEW7aAdLU2gIR0C13phSDRMOdX2UKGgGR8BcexRQ79ycaAdLRWgIR0C13pwTufEodX2UKGgGR8BjuBtrKvFFaAdLUWgIR0C13qR1cMVldX2UKGgGR8Bgc1fJFLFoaAdLQ2gIR0C13rCvovBadX2UKGgGR8BiSXQpnYg8aAdLd2gIR0C13rGOdXkpdX2UKGgGR8Bx976+FlCkaAdLX2gIR0C13rajJuEVdX2UKGgGR8B2gCpqASWaaAdLWGgIR0C13r+jM3ZPdX2UKGgGR8B34G1IAfdRaAdLb2gIR0C13r9xMnJDdX2UKGgGR8BXYEFbFCLNaAdLR2gIR0C13tCyD7IldX2UKGgGR8BnayG+K0laaAdLbmgIR0C13s6/ub7TdX2UKGgGR8B8F2DtgKF7aAdLYmgIR0C13tOpsGgSdX2UKGgGR8BYy7VvuPV/aAdLUGgIR0C13tGs/6frdX2UKGgGR8BxcW2JBPbgaAdLV2gIR0C13uFN5+pgdX2UKGgGR8BgjcDbJwKjaAdLW2gIR0C13uQwfyPNdX2UKGgGR8BqiIlt0mtyaAdLWGgIR0C13u1AAyVOdX2UKGgGR8BX+J4GD+R6aAdLYWgIR0C13u9s7+1jdX2UKGgGR8BeAOskpqh2aAdLYWgIR0C13vIcaOxTdX2UKGgGR8BeO3668QI2aAdLR2gIR0C13vIbCJoCdX2UKGgGR8B0BCvIOpbVaAdLiGgIR0C13vZLh73PdX2UKGgGR8BigEdvKlpHaAdLV2gIR0C13wXdsSCfdX2UKGgGR8Bd4Y2sJY1YaAdLUWgIR0C13woIWxhVdX2UKGgGR8B6qyARTS9eaAdLVGgIR0C13wxjz7MxdX2UKGgGR8BqrpE0BOpLaAdLcWgIR0C13w3wkPc0dX2UKGgGR8Boubrqt5lfaAdLSmgIR0C13xLwrlNldX2UKGgGR8ByhyDQJHAiaAdLbGgIR0C13xTpLVWkdX2UKGgGR8Bp5BWaMJhOaAdLP2gIR0C13x/crRShdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 6,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 1048576,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.99,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 6,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x785507947f40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785507758040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855077580d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785507758160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7855077581f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x785507758280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x785507758310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855077583a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x785507758430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855077584c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785507758550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7855077585e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7855078f5140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1702297928282337284,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Ccb0F76M8M/eHue4h9b020FE8Dm8jPQAAAAAAAAAAGlk7PcNpVro7q2g7BmabNg83Rzr+O4a6AACAPwAAgD/NpVc9POORPqAiib7WKIa+3Zv8vWURfTwAAAAAAAAAAM3Y37xcIw26ObCUuU2Xm7SVHjK6k7SqOAAAgD8AAIA/xsc9vjarG7xT3Pw4HKNoNuiSij12The4AACAPwAAgD/AHOu9TMylP5ve7r5fc+W+/BvdvXsANr4AAAAAAAAAAGA7Gb7tfEo/ldM7vcGun74jmaO9+d03PQAAAAAAAAAAZqGiPVynH7q/LIm7D4M/tofPMLvSO6E6AACAPwAAAACaC9289rxeuqIqijqiSaU0bBSBOvmfoLkAAIA/AACAPw3Upj1SsMm5FkKAu3CzdjinhYQ531aJOQAAgD8AAIA/wGO/vdFCvD0xgZa9e8rQvW+hlL3OiEu9AAAAAAAAAABmbTO9KeBRutWY7LpNEYu1pgO5OavCCToAAIA/AACAP8BuiT2Fs+i5bhOIup/4kjUpQb65m1KcOQAAgD8AAIA/GjdKvbjmlbkSKC874pNUtrQTsrvdz1C6AACAPwAAgD8N6aQ9g1w0vMtxeTwSduK8LKmkPQ85uz0AAIA/AACAP1p1tL2P/ju6Os+eOb7RBTZOjE26Dw22uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFafR/mT1WMAWyUTegDjAF0lEdAkzjZ0CA+ZHV9lChoBkdAX/hQizLOiWgHTegDaAhHQJM6Dwpe/pN1fZQoaAZHQFoYLK3d9DxoB03oA2gIR0CTPDQ8fV7QdX2UKGgGR0BkyxA+pwS8aAdN6ANoCEdAkzx9pyp71XV9lChoBkdAZiMMhouf3GgHTegDaAhHQJNBBLg4wRJ1fZQoaAZHQFkkamGdqcpoB03oA2gIR0CTRUNyHVPOdX2UKGgGR0AktV6NVBD5aAdL0GgIR0CTTJKneiztdX2UKGgGR0BiQJI+W4ViaAdN6ANoCEdAk1YtfTkQw3V9lChoBkdAXpmE0zj3mGgHTegDaAhHQJNd0KD01651fZQoaAZHQGMfEe6qbSZoB03oA2gIR0CTZs9+w1R+dX2UKGgGR0BgllmDlHSXaAdN6ANoCEdAk303scABDHV9lChoBkdAYcW6q814xGgHTegDaAhHQJOAZjYqXnh1fZQoaAZHQGOUYdQwbl1oB03oA2gIR0CThJolUp/gdX2UKGgGR0Bg13zasZHeaAdN6ANoCEdAk4vwcDKYA3V9lChoBkdAX71+AmReTmgHTegDaAhHQJOM3yMDOkd1fZQoaAZHQGGVxYA80UJoB03oA2gIR0CTkU1hb4ahdX2UKGgGR0BhnOac7QsxaAdN6ANoCEdAk5QOFg2If3V9lChoBkdAYNQdV/+bVmgHTegDaAhHQJOVf2xptaZ1fZQoaAZHQFpPnA6+36RoB03oA2gIR0CTmE6U7jkudX2UKGgGR0BeRp1ie/YbaAdN6ANoCEdAk5iHAmAskXV9lChoBkdAYSkox59mYmgHTegDaAhHQJOcLw+dK/V1fZQoaAZHQGL0Tu4PPLRoB03oA2gIR0CTn1iaiKzidX2UKGgGR0A4y1nM+u/2aAdL5mgIR0CTo95GBnSOdX2UKGgGR0BlUgVVPva2aAdN6ANoCEdAk6TJ0nw5N3V9lChoBkdAW7PLOiWVvGgHTegDaAhHQJOtjcIqslt1fZQoaAZHQF/KSWqtHQRoB03oA2gIR0CTt03M6ij+dX2UKGgGR0BiOqCxu89PaAdN6ANoCEdAk8Ifi97F9HV9lChoBkdAZLJg88s+V2gHTegDaAhHQJPWF/BnBcl1fZQoaAZHQGAoUkWykbhoB03oA2gIR0CT2Fxi5NGmdX2UKGgGR0BjVs+V1Oj7aAdN6ANoCEdAk9tIqwyIpHV9lChoBkdAYr17LMcIaGgHTegDaAhHQJQLq+i8Fpx1fZQoaAZHQGLSA9vCMxZoB03oA2gIR0CUDKTl1bJPdX2UKGgGR0BgkAvN/vv0aAdN6ANoCEdAlBERFqi48XV9lChoBkdAYmUBZpztC2gHTegDaAhHQJQVJswco6V1fZQoaAZHQFg+HCoCMgloB03oA2gIR0CUF/UWEbo9dX2UKGgGR0BZJRV+7UXpaAdN6ANoCEdAlBgx1cMVlHV9lChoBkdAWViyMUAT7GgHTegDaAhHQJQb15+pfhN1fZQoaAZHQCEQYrJ8v25oB0vzaAhHQJQdQHmig011fZQoaAZHQGFsUBOpKjBoB03oA2gIR0CUHu2exwAEdX2UKGgGR0BecCCJ40MxaAdN6ANoCEdAlCPSXlbNbHV9lChoBkdAZoUf7rLQomgHTegDaAhHQJQk+NS619h1fZQoaAZHQFds+j/MnqpoB03oA2gIR0CULrK+i8FqdX2UKGgGR0BhE8unMt9QaAdN6ANoCEdAlDYGG7Bfr3V9lChoBkdAYtlrftQbdmgHTegDaAhHQJQ+OExqO951fZQoaAZHQGUVdR77bcpoB03oA2gIR0CUUyCEpRXPdX2UKGgGR0BhWivHLidbaAdN6ANoCEdAlFVa3/givHV9lChoBkdAYCd2K2rn1WgHTegDaAhHQJRYcGSpzcR1fZQoaAZHQGRWHAZbY9RoB03oA2gIR0CUYbQDFId3dX2UKGgGR0BbYlx82JizaAdN6ANoCEdAlGgDJdSl33V9lChoBkdAZ1Vvl2eQMmgHTegDaAhHQJRtldD6WPd1fZQoaAZHQFn/tzCDVYpoB03oA2gIR0CUcLdMCcPOdX2UKGgGR0BjhwEt/WlNaAdN6ANoCEdAlHDuOXE61nV9lChoBkdAW24HkcS5AmgHTegDaAhHQJR098ohIOJ1fZQoaAZHQGPAmf5DZ15oB03oA2gIR0CUdnRm9QGfdX2UKGgGR0Bit4ddVvMsaAdN6ANoCEdAlHheLWI42nV9lChoBkdAY3SQ2/BWP2gHTegDaAhHQJR8v4BV+7V1fZQoaAZHQGFJCv5gw49oB03oA2gIR0CUfYPK+zt1dX2UKGgGR0BHfHerMkhSaAdNHgFoCEdAlISYrOJLunV9lChoBkdAWhWG9Htnf2gHTegDaAhHQJSFJEPUayd1fZQoaAZHQFt+aNdZ7oloB03oA2gIR0CUi2WrfcesdX2UKGgGR0BiIkRe1KGtaAdN6ANoCEdAlJR0gB91EHV9lChoBkdAMOpqASWZ7WgHS+5oCEdAlJpxFNL13HV9lChoBkdAYjo482aUimgHTegDaAhHQJStvifg75p1fZQoaAZHQGcutkOI68xoB03oA2gIR0CUr/cPOIIodX2UKGgGR0Bfx9Sde6ZqaAdN6ANoCEdAlLMJuqFRHnV9lChoBkdAXewvVVghKWgHTegDaAhHQJS6wDs+mnB1fZQoaAZHQGM5ArpaA4JoB03oA2gIR0CU6HKMNtqIdX2UKGgGR0BhcyKBNEgGaAdN6ANoCEdAlOy4MWoFV3V9lChoBkdAY2gPeYUnHGgHTegDaAhHQJTv5HSWqtJ1fZQoaAZHQGQmQA2hqTNoB03oA2gIR0CU9BCxNZeSdX2UKGgGR0Bh5T9VFQVLaAdN6ANoCEdAlPWXL7oB73V9lChoBkdAZXja/yoXK2gHTegDaAhHQJT3cht+Csh1fZQoaAZHQGLlzltCRfZoB03oA2gIR0CU/AiKBNEgdX2UKGgGR0BkTvpwCKaYaAdN6ANoCEdAlPzuQlruY3V9lChoBkdAYS7oexOclWgHTegDaAhHQJUEq7iADq51fZQoaAZHQGVXpP69CeFoB03oA2gIR0CVC9ofCAMEdX2UKGgGR0BiumbI91U3aAdN6ANoCEdAlRdu7tiQT3V9lChoBkdAX2mNZNfw7WgHTegDaAhHQJUcdY5ksjF1fZQoaAZHQGY4Ak1Mue1oB03oA2gIR0CVK9bY9Pk8dX2UKGgGR0BhcXjjrAxjaAdN6ANoCEdAlS4I2fkFOnV9lChoBkdAYuMvGp++d2gHTegDaAhHQJUxBa6jFhp1fZQoaAZHQGIxC1y/9HdoB03oA2gIR0CVOImzSkTIdX2UKGgGR0Bfkb6Hj6vaaAdN6ANoCEdAlT0yRjjJdXV9lChoBkdAYMkRnvlU62gHTegDaAhHQJVBcsd1dPd1fZQoaAZHQGNeqMFUyYZoB03oA2gIR0CVRX6/qPfbdX2UKGgGR0Blr7HU+cH4aAdN6ANoCEdAlUtKUqx1PnV9lChoBkdAYx9y5I6KcmgHTegDaAhHQJVNc2LpA2R1fZQoaAZHQEwl4KQaJhxoB03oA2gIR0CVUBucc2itdX2UKGgGR0BlOHzJ6po9aAdN6ANoCEdAlVW/h/Aj6nV9lChoBkdAYBOLhJiAlWgHTegDaAhHQJVWlirksBh1fZQoaAZHQFyzyuIRAbBoB03oA2gIR0CVXk78Nx2jdX2UKGgGR0BfgYpx3mmtaAdN6ANoCEdAlWR287IT5HV9lChoBkdAYM9hd+ocaWgHTegDaAhHQJVsmZjQRf51fZQoaAZHQGKmpBX0XgtoB03oA2gIR0CVcGcBU70WdX2UKGgGR0BjavBguyu7aAdN6ANoCEdAlYDoAsCkoHV9lChoBkdATr5EH+qBE2gHS+hoCEdAlYJ2diDujXV9lChoBkdAYxfF0gbIcWgHTegDaAhHQJWD60ojOcF1fZQoaAZHQGGgxK6FueloB03oA2gIR0CVh92Dg62fdX2UKGgGR0BgL+CNCJGfaAdN6ANoCEdAlZBfyLAHmnV9lChoBkdAXdLxPO6d2GgHTegDaAhHQJWUwA3kxRF1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 124,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 2048,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f56050e85e953ea01a73fa110eb05d1cda7614a8473a406671b18ff63bbbb9b
3
- size 87545
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8221f5bd1a872e4c5479f4df0714a09103679c18d96634aeab01b3dc0a838328
3
+ size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:919c5994cafd1adcdf2af9879349926cf0ae88f9a7b0903ff2fdc8a1dd8de163
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16c153863b50322ccc5af440b2e291f833446e8152365e316c5454d79cbedfc8
3
+ size 43634
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
  - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
 
1
  - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
  - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -168.29639509999998, "std_reward": 27.59724956273997, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-13T08:21:16.275700"}
 
1
+ {"mean_reward": 234.76287762132512, "std_reward": 21.58260314014411, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-11T12:55:17.199520"}