IlluminatiPudding
commited on
Commit
·
580a50b
1
Parent(s):
f29fbde
lets see what king of repo we're talking about
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -168.30 +/- 27.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6fee3ec310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6fee3ec3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6fee3ec430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6fee3ec4c0>", "_build": "<function ActorCriticPolicy._build at 0x7c6fee3ec550>", "forward": "<function ActorCriticPolicy.forward at 0x7c6fee3ec5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6fee3ec670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6fee3ec700>", "_predict": "<function ActorCriticPolicy._predict at 0x7c6fee3ec790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6fee3ec820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6fee3ec8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6fee3ec940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6fee381b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16777216, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697171386122707374, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaZ1b03yR4+eLxmvX47r7+OJiC+soe+vQAAAAAAAAAAzUFavbB+mT/Rawy++EoDv84CgztNW+S9AAAAAAAAAABzZIW9r9MvP6KGkb2NgnS/n++YvYdgMr4AAAAAAAAAAHPlSj6riY8/8g5XPxvqOr+QFaK+AO6svgAAAAAAAAAAM4uJvPgDsT9gobK+ELyavhEGBz3M4CA+AAAAAAAAAACamjI9ly9GPxzFJr0JPG+/soj0PijjgD4AAAAAAAAAAAAEFz4v8yY/vDucPu00hL8Qe9O9W4wlvgAAAAAAAAAAzcFmvTLVoT8ciYe+NVC2vpnjZD0GN4g9AAAAAAAAAAAwuMw+M2VaP+0iBj85JHy/3T7UvZ64GT4AAAAAAAAAAGbFXz4qA4k/8OdFP3cxT796A4G+Yno2vgAAAAAAAAAAmjs2vPDZtj+yR169/K6GvWtEUD16rO48AAAAAAAAAABaBLw+651jP5IjUT9VW1a/QcpJvr7+bDwAAAAAAAAAAMBCtj0I6tI+cdQQPszSpL/7NO89wX3DPAAAAAAAAAAASnVovrS9gz8q0xe/X+hZv2k1Cz9QELM+AAAAAAAAAACzaLq9lgm9P+tISL+Gbm4+ecmbPchGVj0AAAAAAAAAANpXUr5mw6g/2YOIvZeyDb/qzmq+Hj/fvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.777216, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwH6Ls5wOvuCMAWyUS1uMAXSUR0C13THRw6yTdX2UKGgGR8B4V+FEiMYNaAdLbGgIR0C13TJZGKAKdX2UKGgGR8Bxl/VBlcyFaAdLVWgIR0C13TTn7pFDdX2UKGgGR8BfLvaL4vexaAdLQGgIR0C13TSsXBP9dX2UKGgGR8B08l5GBnSOaAdLhGgIR0C13Twlv60qdX2UKGgGR8BWNxwQ176YaAdLcmgIR0C13USQT238dX2UKGgGR8BztfrjYI0JaAdLZ2gIR0C13UYxk/bCdX2UKGgGR8CAGTQKrq+raAdLbGgIR0C13VMo+fRNdX2UKGgGR8BR5IGpuMuOaAdLT2gIR0C13VMm8dxRdX2UKGgGR8BTmwIhQm/naAdLRWgIR0C13WHC4z7/dX2UKGgGR8BSudQ40dilaAdLRGgIR0C13WrYbsF/dX2UKGgGR8BgrpSYPXkHaAdLQ2gIR0C13XCD7IkrdX2UKGgGR8BZvb+kxh2GaAdLcWgIR0C13W85Ke05dX2UKGgGR8Bi2JIJ7b+MaAdLY2gIR0C13XIjKPn0dX2UKGgGR8BbcQv6CUX6aAdLR2gIR0C13XZlar3kdX2UKGgGR8BOs2xQizLPaAdLQmgIR0C13Xll9SdfdX2UKGgGR8BnuOPNmlImaAdLbWgIR0C13XVSS/0vdX2UKGgGR8BZZvbTMJQdaAdLSGgIR0C13Xc5S3spdX2UKGgGR8B03c9X9zfaaAdLaGgIR0C13YG16Vt5dX2UKGgGR8Buu7O7g88taAdLXWgIR0C13YOxjawmdX2UKGgGR8BdB5qASWZ7aAdLSWgIR0C13Yed9UjtdX2UKGgGR8BTTqy0KJEZaAdLOmgIR0C13YcTi83/dX2UKGgGR8BMw4/FBIFvaAdLY2gIR0C13YxaouPFdX2UKGgGR8B7f9zeXRgJaAdLTWgIR0C13ZbMgU1ydX2UKGgGR8CAdJF72L5zaAdLaWgIR0C13aaMm4RVdX2UKGgGR8BQlpLAYYR/aAdLP2gIR0C13a/mPo3adX2UKGgGR8BleR3HJcPfaAdLSWgIR0C13bFrEcbSdX2UKGgGR8BiBIjrzGxVaAdLRWgIR0C13bfgWJrMdX2UKGgGR8Bei0nogV45aAdLSGgIR0C13bfdIoVmdX2UKGgGR8BKztYjjaPCaAdLT2gIR0C13boESuhcdX2UKGgGR8Boo8xh2GIsaAdLaWgIR0C13cGTkhicdX2UKGgGR8BkaRfUnXumaAdLYGgIR0C13cfugHu7dX2UKGgGR8BffkT6BRQ8aAdLSWgIR0C13cbeQ+2WdX2UKGgGR8Bd9XIQvpQlaAdLS2gIR0C13cbW7OE/dX2UKGgGR8BdkKk2xY7raAdLRWgIR0C13cxNyo4udX2UKGgGR8B26fbGm1pkaAdLVWgIR0C13dWmYSg5dX2UKGgGR8BiqZOzposaaAdLdmgIR0C13dZKWcBmdX2UKGgGR8BoFAcWCVbBaAdLRmgIR0C13dl6qsEJdX2UKGgGR8BVvT/uLJjlaAdLbmgIR0C13dlfeDWcdX2UKGgGR8AzaW/8EV32aAdLaWgIR0C13ecQEpy7dX2UKGgGR8BoRaOo5xR3aAdLU2gIR0C13fHVoYeldX2UKGgGR8BbIBnvlU6xaAdLUGgIR0C13fhlYlpodX2UKGgGR8BiuuiaiKziaAdLUWgIR0C13fq/EfkndX2UKGgGR8BdjL6DXe3yaAdLS2gIR0C13gxFmWdFdX2UKGgGR8ByzJaQmu1XaAdLWGgIR0C13gp0bLlndX2UKGgGR8BQmQC4jKPoaAdLX2gIR0C13g7yMDOkdX2UKGgGR8B5UVm4AjptaAdLYWgIR0C13hCq6vq1dX2UKGgGR8BfT9rj5sTGaAdLUmgIR0C13hIuwosqdX2UKGgGR8BT5H+ERJ2/aAdLVWgIR0C13hTpPhybdX2UKGgGR8BpLrHAAQxvaAdLTGgIR0C13h+hwl0HdX2UKGgGR8BJEc+7lJYlaAdLRGgIR0C13ib2g398dX2UKGgGR8BcQIo/iYLLaAdLXGgIR0C13isy8BdVdX2UKGgGR8B5onhHbypaaAdLcGgIR0C13il0PpY+dX2UKGgGR8BRzKgAZKnOaAdLO2gIR0C13jPpt78fdX2UKGgGR8BxRDfNzKcNaAdLeGgIR0C13jyBTXJ6dX2UKGgGR8Beel27nPmgaAdLaWgIR0C13jwMDwH8dX2UKGgGR8BeaN8Z1mrbaAdLT2gIR0C13kR7/n4gdX2UKGgGR8BwGAq3EyckaAdLemgIR0C13kjvuw5edX2UKGgGR8BmbVcpsoDxaAdLRmgIR0C13k4Gt6omdX2UKGgGR8Bgkd0zTF2naAdLa2gIR0C13lgt8NQTdX2UKGgGR8BRzyCe2/i6aAdLUWgIR0C13lpJoTPCdX2UKGgGR8BaEfYe1a4daAdLS2gIR0C13lx5TqB3dX2UKGgGR8B7bpMYdhiLaAdLUGgIR0C13l6RlpXZdX2UKGgGR8BP6ogeRxLkaAdLQ2gIR0C13l/HLidbdX2UKGgGR8Bn4T3sXzlLaAdLR2gIR0C13modZJTVdX2UKGgGR8B9GClO45LiaAdLZmgIR0C13m9EXtSidX2UKGgGR8Bvv0ahpQDWaAdLRWgIR0C13nNwNsnBdX2UKGgGR8B12vLW7OE/aAdLcGgIR0C13nmlQ/HHdX2UKGgGR8BZmnzDn/1haAdLVmgIR0C13nmqtHQQdX2UKGgGR8Ba1t9H+ZPVaAdLU2gIR0C13odP+GXYdX2UKGgGR8Bh84arFOwgaAdLbGgIR0C13o7127nQdX2UKGgGR8BYGFYuCf6HaAdLXWgIR0C13pFdszl+dX2UKGgGR8BdSsB2fTTfaAdLT2gIR0C13pDCxeLOdX2UKGgGR8BwzF/0/W1/aAdLRWgIR0C13pXaJyhjdX2UKGgGR8Bpze+sYEW7aAdLU2gIR0C13phSDRMOdX2UKGgGR8BcexRQ79ycaAdLRWgIR0C13pwTufEodX2UKGgGR8BjuBtrKvFFaAdLUWgIR0C13qR1cMVldX2UKGgGR8Bgc1fJFLFoaAdLQ2gIR0C13rCvovBadX2UKGgGR8BiSXQpnYg8aAdLd2gIR0C13rGOdXkpdX2UKGgGR8Bx976+FlCkaAdLX2gIR0C13rajJuEVdX2UKGgGR8B2gCpqASWaaAdLWGgIR0C13r+jM3ZPdX2UKGgGR8B34G1IAfdRaAdLb2gIR0C13r9xMnJDdX2UKGgGR8BXYEFbFCLNaAdLR2gIR0C13tCyD7IldX2UKGgGR8BnayG+K0laaAdLbmgIR0C13s6/ub7TdX2UKGgGR8B8F2DtgKF7aAdLYmgIR0C13tOpsGgSdX2UKGgGR8BYy7VvuPV/aAdLUGgIR0C13tGs/6frdX2UKGgGR8BxcW2JBPbgaAdLV2gIR0C13uFN5+pgdX2UKGgGR8BgjcDbJwKjaAdLW2gIR0C13uQwfyPNdX2UKGgGR8BqiIlt0mtyaAdLWGgIR0C13u1AAyVOdX2UKGgGR8BX+J4GD+R6aAdLYWgIR0C13u9s7+1jdX2UKGgGR8BeAOskpqh2aAdLYWgIR0C13vIcaOxTdX2UKGgGR8BeO3668QI2aAdLR2gIR0C13vIbCJoCdX2UKGgGR8B0BCvIOpbVaAdLiGgIR0C13vZLh73PdX2UKGgGR8BigEdvKlpHaAdLV2gIR0C13wXdsSCfdX2UKGgGR8Bd4Y2sJY1YaAdLUWgIR0C13woIWxhVdX2UKGgGR8B6qyARTS9eaAdLVGgIR0C13wxjz7MxdX2UKGgGR8BqrpE0BOpLaAdLcWgIR0C13w3wkPc0dX2UKGgGR8Boubrqt5lfaAdLSmgIR0C13xLwrlNldX2UKGgGR8ByhyDQJHAiaAdLbGgIR0C13xTpLVWkdX2UKGgGR8Bp5BWaMJhOaAdLP2gIR0C13x/crRShdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1048576, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76a1ed1e4585a36668ef82de435901e0b6287f3c8fbeb312c9a104bb1cb5d25a
|
3 |
+
size 146103
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c6fee3ec310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6fee3ec3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6fee3ec430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6fee3ec4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c6fee3ec550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c6fee3ec5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6fee3ec670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6fee3ec700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c6fee3ec790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6fee3ec820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6fee3ec8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6fee3ec940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c6fee381b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16777216,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1697171386122707374,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaZ1b03yR4+eLxmvX47r7+OJiC+soe+vQAAAAAAAAAAzUFavbB+mT/Rawy++EoDv84CgztNW+S9AAAAAAAAAABzZIW9r9MvP6KGkb2NgnS/n++YvYdgMr4AAAAAAAAAAHPlSj6riY8/8g5XPxvqOr+QFaK+AO6svgAAAAAAAAAAM4uJvPgDsT9gobK+ELyavhEGBz3M4CA+AAAAAAAAAACamjI9ly9GPxzFJr0JPG+/soj0PijjgD4AAAAAAAAAAAAEFz4v8yY/vDucPu00hL8Qe9O9W4wlvgAAAAAAAAAAzcFmvTLVoT8ciYe+NVC2vpnjZD0GN4g9AAAAAAAAAAAwuMw+M2VaP+0iBj85JHy/3T7UvZ64GT4AAAAAAAAAAGbFXz4qA4k/8OdFP3cxT796A4G+Yno2vgAAAAAAAAAAmjs2vPDZtj+yR169/K6GvWtEUD16rO48AAAAAAAAAABaBLw+651jP5IjUT9VW1a/QcpJvr7+bDwAAAAAAAAAAMBCtj0I6tI+cdQQPszSpL/7NO89wX3DPAAAAAAAAAAASnVovrS9gz8q0xe/X+hZv2k1Cz9QELM+AAAAAAAAAACzaLq9lgm9P+tISL+Gbm4+ecmbPchGVj0AAAAAAAAAANpXUr5mw6g/2YOIvZeyDb/qzmq+Hj/fvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -15.777216,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwH6Ls5wOvuCMAWyUS1uMAXSUR0C13THRw6yTdX2UKGgGR8B4V+FEiMYNaAdLbGgIR0C13TJZGKAKdX2UKGgGR8Bxl/VBlcyFaAdLVWgIR0C13TTn7pFDdX2UKGgGR8BfLvaL4vexaAdLQGgIR0C13TSsXBP9dX2UKGgGR8B08l5GBnSOaAdLhGgIR0C13Twlv60qdX2UKGgGR8BWNxwQ176YaAdLcmgIR0C13USQT238dX2UKGgGR8BztfrjYI0JaAdLZ2gIR0C13UYxk/bCdX2UKGgGR8CAGTQKrq+raAdLbGgIR0C13VMo+fRNdX2UKGgGR8BR5IGpuMuOaAdLT2gIR0C13VMm8dxRdX2UKGgGR8BTmwIhQm/naAdLRWgIR0C13WHC4z7/dX2UKGgGR8BSudQ40dilaAdLRGgIR0C13WrYbsF/dX2UKGgGR8BgrpSYPXkHaAdLQ2gIR0C13XCD7IkrdX2UKGgGR8BZvb+kxh2GaAdLcWgIR0C13W85Ke05dX2UKGgGR8Bi2JIJ7b+MaAdLY2gIR0C13XIjKPn0dX2UKGgGR8BbcQv6CUX6aAdLR2gIR0C13XZlar3kdX2UKGgGR8BOs2xQizLPaAdLQmgIR0C13Xll9SdfdX2UKGgGR8BnuOPNmlImaAdLbWgIR0C13XVSS/0vdX2UKGgGR8BZZvbTMJQdaAdLSGgIR0C13Xc5S3spdX2UKGgGR8B03c9X9zfaaAdLaGgIR0C13YG16Vt5dX2UKGgGR8Buu7O7g88taAdLXWgIR0C13YOxjawmdX2UKGgGR8BdB5qASWZ7aAdLSWgIR0C13Yed9UjtdX2UKGgGR8BTTqy0KJEZaAdLOmgIR0C13YcTi83/dX2UKGgGR8BMw4/FBIFvaAdLY2gIR0C13YxaouPFdX2UKGgGR8B7f9zeXRgJaAdLTWgIR0C13ZbMgU1ydX2UKGgGR8CAdJF72L5zaAdLaWgIR0C13aaMm4RVdX2UKGgGR8BQlpLAYYR/aAdLP2gIR0C13a/mPo3adX2UKGgGR8BleR3HJcPfaAdLSWgIR0C13bFrEcbSdX2UKGgGR8BiBIjrzGxVaAdLRWgIR0C13bfgWJrMdX2UKGgGR8Bei0nogV45aAdLSGgIR0C13bfdIoVmdX2UKGgGR8BKztYjjaPCaAdLT2gIR0C13boESuhcdX2UKGgGR8Boo8xh2GIsaAdLaWgIR0C13cGTkhicdX2UKGgGR8BkaRfUnXumaAdLYGgIR0C13cfugHu7dX2UKGgGR8BffkT6BRQ8aAdLSWgIR0C13cbeQ+2WdX2UKGgGR8Bd9XIQvpQlaAdLS2gIR0C13cbW7OE/dX2UKGgGR8BdkKk2xY7raAdLRWgIR0C13cxNyo4udX2UKGgGR8B26fbGm1pkaAdLVWgIR0C13dWmYSg5dX2UKGgGR8BiqZOzposaaAdLdmgIR0C13dZKWcBmdX2UKGgGR8BoFAcWCVbBaAdLRmgIR0C13dl6qsEJdX2UKGgGR8BVvT/uLJjlaAdLbmgIR0C13dlfeDWcdX2UKGgGR8AzaW/8EV32aAdLaWgIR0C13ecQEpy7dX2UKGgGR8BoRaOo5xR3aAdLU2gIR0C13fHVoYeldX2UKGgGR8BbIBnvlU6xaAdLUGgIR0C13fhlYlpodX2UKGgGR8BiuuiaiKziaAdLUWgIR0C13fq/EfkndX2UKGgGR8BdjL6DXe3yaAdLS2gIR0C13gxFmWdFdX2UKGgGR8ByzJaQmu1XaAdLWGgIR0C13gp0bLlndX2UKGgGR8BQmQC4jKPoaAdLX2gIR0C13g7yMDOkdX2UKGgGR8B5UVm4AjptaAdLYWgIR0C13hCq6vq1dX2UKGgGR8BfT9rj5sTGaAdLUmgIR0C13hIuwosqdX2UKGgGR8BT5H+ERJ2/aAdLVWgIR0C13hTpPhybdX2UKGgGR8BpLrHAAQxvaAdLTGgIR0C13h+hwl0HdX2UKGgGR8BJEc+7lJYlaAdLRGgIR0C13ib2g398dX2UKGgGR8BcQIo/iYLLaAdLXGgIR0C13isy8BdVdX2UKGgGR8B5onhHbypaaAdLcGgIR0C13il0PpY+dX2UKGgGR8BRzKgAZKnOaAdLO2gIR0C13jPpt78fdX2UKGgGR8BxRDfNzKcNaAdLeGgIR0C13jyBTXJ6dX2UKGgGR8Beel27nPmgaAdLaWgIR0C13jwMDwH8dX2UKGgGR8BeaN8Z1mrbaAdLT2gIR0C13kR7/n4gdX2UKGgGR8BwGAq3EyckaAdLemgIR0C13kjvuw5edX2UKGgGR8BmbVcpsoDxaAdLRmgIR0C13k4Gt6omdX2UKGgGR8Bgkd0zTF2naAdLa2gIR0C13lgt8NQTdX2UKGgGR8BRzyCe2/i6aAdLUWgIR0C13lpJoTPCdX2UKGgGR8BaEfYe1a4daAdLS2gIR0C13lx5TqB3dX2UKGgGR8B7bpMYdhiLaAdLUGgIR0C13l6RlpXZdX2UKGgGR8BP6ogeRxLkaAdLQ2gIR0C13l/HLidbdX2UKGgGR8Bn4T3sXzlLaAdLR2gIR0C13modZJTVdX2UKGgGR8B9GClO45LiaAdLZmgIR0C13m9EXtSidX2UKGgGR8Bvv0ahpQDWaAdLRWgIR0C13nNwNsnBdX2UKGgGR8B12vLW7OE/aAdLcGgIR0C13nmlQ/HHdX2UKGgGR8BZmnzDn/1haAdLVmgIR0C13nmqtHQQdX2UKGgGR8Ba1t9H+ZPVaAdLU2gIR0C13odP+GXYdX2UKGgGR8Bh84arFOwgaAdLbGgIR0C13o7127nQdX2UKGgGR8BYGFYuCf6HaAdLXWgIR0C13pFdszl+dX2UKGgGR8BdSsB2fTTfaAdLT2gIR0C13pDCxeLOdX2UKGgGR8BwzF/0/W1/aAdLRWgIR0C13pXaJyhjdX2UKGgGR8Bpze+sYEW7aAdLU2gIR0C13phSDRMOdX2UKGgGR8BcexRQ79ycaAdLRWgIR0C13pwTufEodX2UKGgGR8BjuBtrKvFFaAdLUWgIR0C13qR1cMVldX2UKGgGR8Bgc1fJFLFoaAdLQ2gIR0C13rCvovBadX2UKGgGR8BiSXQpnYg8aAdLd2gIR0C13rGOdXkpdX2UKGgGR8Bx976+FlCkaAdLX2gIR0C13rajJuEVdX2UKGgGR8B2gCpqASWaaAdLWGgIR0C13r+jM3ZPdX2UKGgGR8B34G1IAfdRaAdLb2gIR0C13r9xMnJDdX2UKGgGR8BXYEFbFCLNaAdLR2gIR0C13tCyD7IldX2UKGgGR8BnayG+K0laaAdLbmgIR0C13s6/ub7TdX2UKGgGR8B8F2DtgKF7aAdLYmgIR0C13tOpsGgSdX2UKGgGR8BYy7VvuPV/aAdLUGgIR0C13tGs/6frdX2UKGgGR8BxcW2JBPbgaAdLV2gIR0C13uFN5+pgdX2UKGgGR8BgjcDbJwKjaAdLW2gIR0C13uQwfyPNdX2UKGgGR8BqiIlt0mtyaAdLWGgIR0C13u1AAyVOdX2UKGgGR8BX+J4GD+R6aAdLYWgIR0C13u9s7+1jdX2UKGgGR8BeAOskpqh2aAdLYWgIR0C13vIcaOxTdX2UKGgGR8BeO3668QI2aAdLR2gIR0C13vIbCJoCdX2UKGgGR8B0BCvIOpbVaAdLiGgIR0C13vZLh73PdX2UKGgGR8BigEdvKlpHaAdLV2gIR0C13wXdsSCfdX2UKGgGR8Bd4Y2sJY1YaAdLUWgIR0C13woIWxhVdX2UKGgGR8B6qyARTS9eaAdLVGgIR0C13wxjz7MxdX2UKGgGR8BqrpE0BOpLaAdLcWgIR0C13w3wkPc0dX2UKGgGR8Boubrqt5lfaAdLSmgIR0C13xLwrlNldX2UKGgGR8ByhyDQJHAiaAdLbGgIR0C13xTpLVWkdX2UKGgGR8Bp5BWaMJhOaAdLP2gIR0C13x/crRShdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 6,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1048576,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 6,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f56050e85e953ea01a73fa110eb05d1cda7614a8473a406671b18ff63bbbb9b
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:919c5994cafd1adcdf2af9879349926cf0ae88f9a7b0903ff2fdc8a1dd8de163
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -168.29639509999998, "std_reward": 27.59724956273997, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-13T08:21:16.275700"}
|