ppo-LunarLander-v2 / config.json
IlluminatiPudding's picture
Upload PPO LunarLander-v2 trained agent
10d9347
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x785507947f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785507758040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7855077580d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785507758160>", "_build": "<function ActorCriticPolicy._build at 0x7855077581f0>", "forward": "<function ActorCriticPolicy.forward at 0x785507758280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x785507758310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7855077583a0>", "_predict": "<function ActorCriticPolicy._predict at 0x785507758430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7855077584c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785507758550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7855077585e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7855078f5140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702297928282337284, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Ccb0F76M8M/eHue4h9b020FE8Dm8jPQAAAAAAAAAAGlk7PcNpVro7q2g7BmabNg83Rzr+O4a6AACAPwAAgD/NpVc9POORPqAiib7WKIa+3Zv8vWURfTwAAAAAAAAAAM3Y37xcIw26ObCUuU2Xm7SVHjK6k7SqOAAAgD8AAIA/xsc9vjarG7xT3Pw4HKNoNuiSij12The4AACAPwAAgD/AHOu9TMylP5ve7r5fc+W+/BvdvXsANr4AAAAAAAAAAGA7Gb7tfEo/ldM7vcGun74jmaO9+d03PQAAAAAAAAAAZqGiPVynH7q/LIm7D4M/tofPMLvSO6E6AACAPwAAAACaC9289rxeuqIqijqiSaU0bBSBOvmfoLkAAIA/AACAPw3Upj1SsMm5FkKAu3CzdjinhYQ531aJOQAAgD8AAIA/wGO/vdFCvD0xgZa9e8rQvW+hlL3OiEu9AAAAAAAAAABmbTO9KeBRutWY7LpNEYu1pgO5OavCCToAAIA/AACAP8BuiT2Fs+i5bhOIup/4kjUpQb65m1KcOQAAgD8AAIA/GjdKvbjmlbkSKC874pNUtrQTsrvdz1C6AACAPwAAgD8N6aQ9g1w0vMtxeTwSduK8LKmkPQ85uz0AAIA/AACAP1p1tL2P/ju6Os+eOb7RBTZOjE26Dw22uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGFafR/mT1WMAWyUTegDjAF0lEdAkzjZ0CA+ZHV9lChoBkdAX/hQizLOiWgHTegDaAhHQJM6Dwpe/pN1fZQoaAZHQFoYLK3d9DxoB03oA2gIR0CTPDQ8fV7QdX2UKGgGR0BkyxA+pwS8aAdN6ANoCEdAkzx9pyp71XV9lChoBkdAZiMMhouf3GgHTegDaAhHQJNBBLg4wRJ1fZQoaAZHQFkkamGdqcpoB03oA2gIR0CTRUNyHVPOdX2UKGgGR0AktV6NVBD5aAdL0GgIR0CTTJKneiztdX2UKGgGR0BiQJI+W4ViaAdN6ANoCEdAk1YtfTkQw3V9lChoBkdAXpmE0zj3mGgHTegDaAhHQJNd0KD01651fZQoaAZHQGMfEe6qbSZoB03oA2gIR0CTZs9+w1R+dX2UKGgGR0BgllmDlHSXaAdN6ANoCEdAk303scABDHV9lChoBkdAYcW6q814xGgHTegDaAhHQJOAZjYqXnh1fZQoaAZHQGOUYdQwbl1oB03oA2gIR0CThJolUp/gdX2UKGgGR0Bg13zasZHeaAdN6ANoCEdAk4vwcDKYA3V9lChoBkdAX71+AmReTmgHTegDaAhHQJOM3yMDOkd1fZQoaAZHQGGVxYA80UJoB03oA2gIR0CTkU1hb4ahdX2UKGgGR0BhnOac7QsxaAdN6ANoCEdAk5QOFg2If3V9lChoBkdAYNQdV/+bVmgHTegDaAhHQJOVf2xptaZ1fZQoaAZHQFpPnA6+36RoB03oA2gIR0CTmE6U7jkudX2UKGgGR0BeRp1ie/YbaAdN6ANoCEdAk5iHAmAskXV9lChoBkdAYSkox59mYmgHTegDaAhHQJOcLw+dK/V1fZQoaAZHQGL0Tu4PPLRoB03oA2gIR0CTn1iaiKzidX2UKGgGR0A4y1nM+u/2aAdL5mgIR0CTo95GBnSOdX2UKGgGR0BlUgVVPva2aAdN6ANoCEdAk6TJ0nw5N3V9lChoBkdAW7PLOiWVvGgHTegDaAhHQJOtjcIqslt1fZQoaAZHQF/KSWqtHQRoB03oA2gIR0CTt03M6ij+dX2UKGgGR0BiOqCxu89PaAdN6ANoCEdAk8Ifi97F9HV9lChoBkdAZLJg88s+V2gHTegDaAhHQJPWF/BnBcl1fZQoaAZHQGAoUkWykbhoB03oA2gIR0CT2Fxi5NGmdX2UKGgGR0BjVs+V1Oj7aAdN6ANoCEdAk9tIqwyIpHV9lChoBkdAYr17LMcIaGgHTegDaAhHQJQLq+i8Fpx1fZQoaAZHQGLSA9vCMxZoB03oA2gIR0CUDKTl1bJPdX2UKGgGR0BgkAvN/vv0aAdN6ANoCEdAlBERFqi48XV9lChoBkdAYmUBZpztC2gHTegDaAhHQJQVJswco6V1fZQoaAZHQFg+HCoCMgloB03oA2gIR0CUF/UWEbo9dX2UKGgGR0BZJRV+7UXpaAdN6ANoCEdAlBgx1cMVlHV9lChoBkdAWViyMUAT7GgHTegDaAhHQJQb15+pfhN1fZQoaAZHQCEQYrJ8v25oB0vzaAhHQJQdQHmig011fZQoaAZHQGFsUBOpKjBoB03oA2gIR0CUHu2exwAEdX2UKGgGR0BecCCJ40MxaAdN6ANoCEdAlCPSXlbNbHV9lChoBkdAZoUf7rLQomgHTegDaAhHQJQk+NS619h1fZQoaAZHQFds+j/MnqpoB03oA2gIR0CULrK+i8FqdX2UKGgGR0BhE8unMt9QaAdN6ANoCEdAlDYGG7Bfr3V9lChoBkdAYtlrftQbdmgHTegDaAhHQJQ+OExqO951fZQoaAZHQGUVdR77bcpoB03oA2gIR0CUUyCEpRXPdX2UKGgGR0BhWivHLidbaAdN6ANoCEdAlFVa3/givHV9lChoBkdAYCd2K2rn1WgHTegDaAhHQJRYcGSpzcR1fZQoaAZHQGRWHAZbY9RoB03oA2gIR0CUYbQDFId3dX2UKGgGR0BbYlx82JizaAdN6ANoCEdAlGgDJdSl33V9lChoBkdAZ1Vvl2eQMmgHTegDaAhHQJRtldD6WPd1fZQoaAZHQFn/tzCDVYpoB03oA2gIR0CUcLdMCcPOdX2UKGgGR0BjhwEt/WlNaAdN6ANoCEdAlHDuOXE61nV9lChoBkdAW24HkcS5AmgHTegDaAhHQJR098ohIOJ1fZQoaAZHQGPAmf5DZ15oB03oA2gIR0CUdnRm9QGfdX2UKGgGR0Bit4ddVvMsaAdN6ANoCEdAlHheLWI42nV9lChoBkdAY3SQ2/BWP2gHTegDaAhHQJR8v4BV+7V1fZQoaAZHQGFJCv5gw49oB03oA2gIR0CUfYPK+zt1dX2UKGgGR0BHfHerMkhSaAdNHgFoCEdAlISYrOJLunV9lChoBkdAWhWG9Htnf2gHTegDaAhHQJSFJEPUayd1fZQoaAZHQFt+aNdZ7oloB03oA2gIR0CUi2WrfcesdX2UKGgGR0BiIkRe1KGtaAdN6ANoCEdAlJR0gB91EHV9lChoBkdAMOpqASWZ7WgHS+5oCEdAlJpxFNL13HV9lChoBkdAYjo482aUimgHTegDaAhHQJStvifg75p1fZQoaAZHQGcutkOI68xoB03oA2gIR0CUr/cPOIIodX2UKGgGR0Bfx9Sde6ZqaAdN6ANoCEdAlLMJuqFRHnV9lChoBkdAXewvVVghKWgHTegDaAhHQJS6wDs+mnB1fZQoaAZHQGM5ArpaA4JoB03oA2gIR0CU6HKMNtqIdX2UKGgGR0BhcyKBNEgGaAdN6ANoCEdAlOy4MWoFV3V9lChoBkdAY2gPeYUnHGgHTegDaAhHQJTv5HSWqtJ1fZQoaAZHQGQmQA2hqTNoB03oA2gIR0CU9BCxNZeSdX2UKGgGR0Bh5T9VFQVLaAdN6ANoCEdAlPWXL7oB73V9lChoBkdAZXja/yoXK2gHTegDaAhHQJT3cht+Csh1fZQoaAZHQGLlzltCRfZoB03oA2gIR0CU/AiKBNEgdX2UKGgGR0BkTvpwCKaYaAdN6ANoCEdAlPzuQlruY3V9lChoBkdAYS7oexOclWgHTegDaAhHQJUEq7iADq51fZQoaAZHQGVXpP69CeFoB03oA2gIR0CVC9ofCAMEdX2UKGgGR0BiumbI91U3aAdN6ANoCEdAlRdu7tiQT3V9lChoBkdAX2mNZNfw7WgHTegDaAhHQJUcdY5ksjF1fZQoaAZHQGY4Ak1Mue1oB03oA2gIR0CVK9bY9Pk8dX2UKGgGR0BhcXjjrAxjaAdN6ANoCEdAlS4I2fkFOnV9lChoBkdAYuMvGp++d2gHTegDaAhHQJUxBa6jFhp1fZQoaAZHQGIxC1y/9HdoB03oA2gIR0CVOImzSkTIdX2UKGgGR0Bfkb6Hj6vaaAdN6ANoCEdAlT0yRjjJdXV9lChoBkdAYMkRnvlU62gHTegDaAhHQJVBcsd1dPd1fZQoaAZHQGNeqMFUyYZoB03oA2gIR0CVRX6/qPfbdX2UKGgGR0Blr7HU+cH4aAdN6ANoCEdAlUtKUqx1PnV9lChoBkdAYx9y5I6KcmgHTegDaAhHQJVNc2LpA2R1fZQoaAZHQEwl4KQaJhxoB03oA2gIR0CVUBucc2itdX2UKGgGR0BlOHzJ6po9aAdN6ANoCEdAlVW/h/Aj6nV9lChoBkdAYBOLhJiAlWgHTegDaAhHQJVWlirksBh1fZQoaAZHQFyzyuIRAbBoB03oA2gIR0CVXk78Nx2jdX2UKGgGR0BfgYpx3mmtaAdN6ANoCEdAlWR287IT5HV9lChoBkdAYM9hd+ocaWgHTegDaAhHQJVsmZjQRf51fZQoaAZHQGKmpBX0XgtoB03oA2gIR0CVcGcBU70WdX2UKGgGR0BjavBguyu7aAdN6ANoCEdAlYDoAsCkoHV9lChoBkdATr5EH+qBE2gHS+hoCEdAlYJ2diDujXV9lChoBkdAYxfF0gbIcWgHTegDaAhHQJWD60ojOcF1fZQoaAZHQGGgxK6FueloB03oA2gIR0CVh92Dg62fdX2UKGgGR0BgL+CNCJGfaAdN6ANoCEdAlZBfyLAHmnV9lChoBkdAXdLxPO6d2GgHTegDaAhHQJWUwA3kxRF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}