File size: 17,203 Bytes
f195aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 100008,
    "_total_timesteps": 100000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1699952868773575229,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnE0vjGLmD40Jjw+comLP5J9Wj8IKDw+DZRYQFIzh7+I3U/A2aDnv/5GgL48JTw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG/K7P9bvx79Z6Y2/+SiQP0GX0D5Z6Y2/ZLGFv0SoC78EHni+YmN0viUNoL9Z6Y2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD3cmk+9KiUviboxb0+svy/8IiivwxEz78oFIC/CnE0vjGLmD40Jjw+qS98PCw3J73aKO68S3S4O3lLmjxTV6o9h4c/uuycF71oAdY6ifsgvyDQSb9EOzy/vRm7vgX+oD+5q/I4NfSTP3KJiz+SfVo/CCg8PgO4fjwLlie92JfwvOa3qzv4DZk8eg6qPS9q9bqlaxi9YquTOmFk6T7kGWW/YV4+vzCxxT6WFaE+o/Z3PKnBfb8NlFhAUjOHv4jdT8CldwpAH9EqQL4K2j9aIeRAaRFKwAAAIMGN0AQ+PBNYQAbkHz+0FwS/6NgjPaNwyb4YdhvAzSagP+yhOD606WQ/2aDnv/5GgL48JTw+j4d+PC45Jr1jaI1AHTyxO6cHmTx5Dqo96Gr1urRrGL2+57U6lGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[-0.17621246  0.29793695  0.18373948]\n [ 1.090132    0.85347855  0.18374646]\n [ 3.3840363  -1.0562537  -3.2478962 ]\n [-1.8095962  -0.25054163  0.18373579]]",
        "desired_goal": "[[ 1.468326   -1.5620067  -1.1086837 ]\n [ 1.1262504   0.40740398 -1.1086837 ]\n [-1.044476   -0.5455363  -0.242302  ]\n [-0.23866037 -1.2504011  -1.1086837 ]]",
        "observation": "[[ 2.27977619e-01 -2.90351510e-01 -9.66341943e-02 -1.97418952e+00\n  -1.26980400e+00 -1.61926413e+00 -1.00061512e+00 -1.76212460e-01\n   2.97936946e-01  1.83739483e-01  1.53922224e-02 -4.08241004e-02\n  -2.90722139e-02  5.62909758e-03  1.88348163e-02  8.31743702e-02\n  -7.30626693e-04 -3.70148867e-02  1.63273234e-03]\n [-6.28838122e-01 -7.88331985e-01 -7.35279322e-01 -3.65430743e-01\n   1.25775206e+00  1.15714451e-04  1.15589011e+00  1.09013200e+00\n   8.53478551e-01  1.83746457e-01  1.55468015e-02 -4.09145765e-02\n  -2.93692797e-02  5.24042826e-03  1.86834186e-02  8.30354244e-02\n  -1.87236618e-03 -3.72120328e-02  1.12662860e-03]\n [ 4.55843955e-01 -8.94926310e-01 -7.43627608e-01  3.86117458e-01\n   3.14617813e-01  1.51344864e-02 -9.91236269e-01  3.38403630e+00\n  -1.05625367e+00 -3.24789619e+00  2.16355252e+00  2.66901374e+00\n   1.70345283e+00  7.12907124e+00 -3.15731263e+00 -1.00000000e+01\n   1.29701808e-01  3.37617397e+00  6.24573112e-01]\n [-5.15986681e-01  4.00017798e-02 -3.93437475e-01 -2.42908287e+00\n   1.25118411e+00  1.80305183e-01  8.94191027e-01 -1.80959618e+00\n  -2.50541627e-01  1.83735788e-01  1.55352494e-02 -4.05818745e-02\n   4.41899252e+00  5.40877739e-03  1.86804067e-02  8.30354169e-02\n  -1.87238771e-03 -3.72120887e-02  1.38782687e-03]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATU7JPHUHq70K16M8Ch+LPWeWCj0K16M8h0CyOecZ/jwK16M8fOUFPW2MsL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAom3+vdzwOjxq3249ica6PQpbt73BIio+2DNPPXps/z0K16M8ky6cPepX+7pfwUI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATU7JPHUHq70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAofiz1nlgo9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACHQLI55xn+PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfOUFPW2MsL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[ 0.02457347 -0.08351032  0.02      ]\n [ 0.0679303   0.03383484  0.02      ]\n [ 0.00033999  0.03101821  0.02      ]\n [ 0.03268956 -0.08620534  0.02      ]]",
        "desired_goal": "[[-0.12423255  0.01140996  0.05831853]\n [ 0.09119899 -0.08952911  0.1661482 ]\n [ 0.05058655  0.12471862  0.02      ]\n [ 0.07626071 -0.0019176   0.19019078]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  2.4573470e-02\n  -8.3510317e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  6.7930296e-02\n   3.3834841e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  3.3998882e-04\n   3.1018211e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  3.2689556e-02\n  -8.6205341e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -8.000000000008001e-05,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0BzsWUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzs2fra/RFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BztgNutOmBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzsFj4HoovdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzuicc2itadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzvA+u/1xsdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BzvDVPN3W4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzvt8zAN5MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzuTOiWVu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzww4PwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzxUDB/I8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzx5Zq20AtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzwetRvWH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy6N4qwyJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzzeK+BYmtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz0RCgK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy25AhStOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1TXSSeRQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz12FFlTWHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz2dPi1iOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1CjFhodudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3j9YOlO5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4G3jMmngdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4qzw+dK/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3QRChN/OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5rlq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz6OrtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz60jcEeQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5aCHymQ9dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Bz7RqesgdPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz77h0hePadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz8d1/2Cd0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz7tN0vGp/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz9hMlC1JEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+J5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+ssNDtw8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz948hcJMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz/1eXzDoAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Am7voePrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BSrOqvNedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BFUkv9LpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0DGCUX531dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0D9YdQwbmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Em0E5hjOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ElKqXF98dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0GqwHJLdvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0HhHSWqtHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0IMkX1rZbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ICXeFcptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0J/jrAxi5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0KxliBoVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LbM5fdAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LUfgaWHDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0NXVx0dR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0OMs3AEdOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0O2exwAEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0PF27nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RNbHIZIhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0R7wc5sCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0SeOgg5imdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RrUZvUBodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ThRUFSsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ULAM2FWXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0UwibDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0T8WAPNFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0VzD1oQFtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Wiw/xDsudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0XFxjriVCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0We/7BO58dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Yas6q815dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ZEYuTRpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Zo3++/QCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Y1Um2LHddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0apFspG4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bQrQPZqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0by1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bBIqbz9TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0cz6rNnoQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dc5dWyTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0d9e2NNrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dMYbbUPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0e/ShJyyVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fna11GLDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0gKlyimEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fXcQAdXDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hLKGL1mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hzi2lVLjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0iX4AS39adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hj7el9BsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jYYzi0fHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kBNfw7T2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kikrPMSsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jvqUu+RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ljqbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mMiRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mvUmUnogdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0l86aLGaQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0nvkyULUkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0oZaSs8xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0o8IcBEKFdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 8334,
    "n_steps": 3,
    "gamma": 0.95,
    "gae_lambda": 0.96,
    "ent_coef": 0.008,
    "vf_coef": 0.01,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True]",
        "bounded_above": "[ True  True  True  True]",
        "_shape": [
            4
        ],
        "low": "[-1. -1. -1. -1.]",
        "high": "[1. 1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}