IlluminatiPudding commited on
Commit
f195aad
1 Parent(s): ea52d8e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d88aa9de0e46cea5d53c96364086a594cda000be7981a88aca40e3ff3c3355da
3
+ size 124487
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 100008,
23
+ "_total_timesteps": 100000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699952868773575229,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnE0vjGLmD40Jjw+comLP5J9Wj8IKDw+DZRYQFIzh7+I3U/A2aDnv/5GgL48JTw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG/K7P9bvx79Z6Y2/+SiQP0GX0D5Z6Y2/ZLGFv0SoC78EHni+YmN0viUNoL9Z6Y2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD3cmk+9KiUviboxb0+svy/8IiivwxEz78oFIC/CnE0vjGLmD40Jjw+qS98PCw3J73aKO68S3S4O3lLmjxTV6o9h4c/uuycF71oAdY6ifsgvyDQSb9EOzy/vRm7vgX+oD+5q/I4NfSTP3KJiz+SfVo/CCg8PgO4fjwLlie92JfwvOa3qzv4DZk8eg6qPS9q9bqlaxi9YquTOmFk6T7kGWW/YV4+vzCxxT6WFaE+o/Z3PKnBfb8NlFhAUjOHv4jdT8CldwpAH9EqQL4K2j9aIeRAaRFKwAAAIMGN0AQ+PBNYQAbkHz+0FwS/6NgjPaNwyb4YdhvAzSagP+yhOD606WQ/2aDnv/5GgL48JTw+j4d+PC45Jr1jaI1AHTyxO6cHmTx5Dqo96Gr1urRrGL2+57U6lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.17621246 0.29793695 0.18373948]\n [ 1.090132 0.85347855 0.18374646]\n [ 3.3840363 -1.0562537 -3.2478962 ]\n [-1.8095962 -0.25054163 0.18373579]]",
34
+ "desired_goal": "[[ 1.468326 -1.5620067 -1.1086837 ]\n [ 1.1262504 0.40740398 -1.1086837 ]\n [-1.044476 -0.5455363 -0.242302 ]\n [-0.23866037 -1.2504011 -1.1086837 ]]",
35
+ "observation": "[[ 2.27977619e-01 -2.90351510e-01 -9.66341943e-02 -1.97418952e+00\n -1.26980400e+00 -1.61926413e+00 -1.00061512e+00 -1.76212460e-01\n 2.97936946e-01 1.83739483e-01 1.53922224e-02 -4.08241004e-02\n -2.90722139e-02 5.62909758e-03 1.88348163e-02 8.31743702e-02\n -7.30626693e-04 -3.70148867e-02 1.63273234e-03]\n [-6.28838122e-01 -7.88331985e-01 -7.35279322e-01 -3.65430743e-01\n 1.25775206e+00 1.15714451e-04 1.15589011e+00 1.09013200e+00\n 8.53478551e-01 1.83746457e-01 1.55468015e-02 -4.09145765e-02\n -2.93692797e-02 5.24042826e-03 1.86834186e-02 8.30354244e-02\n -1.87236618e-03 -3.72120328e-02 1.12662860e-03]\n [ 4.55843955e-01 -8.94926310e-01 -7.43627608e-01 3.86117458e-01\n 3.14617813e-01 1.51344864e-02 -9.91236269e-01 3.38403630e+00\n -1.05625367e+00 -3.24789619e+00 2.16355252e+00 2.66901374e+00\n 1.70345283e+00 7.12907124e+00 -3.15731263e+00 -1.00000000e+01\n 1.29701808e-01 3.37617397e+00 6.24573112e-01]\n [-5.15986681e-01 4.00017798e-02 -3.93437475e-01 -2.42908287e+00\n 1.25118411e+00 1.80305183e-01 8.94191027e-01 -1.80959618e+00\n -2.50541627e-01 1.83735788e-01 1.55352494e-02 -4.05818745e-02\n 4.41899252e+00 5.40877739e-03 1.86804067e-02 8.30354169e-02\n -1.87238771e-03 -3.72120887e-02 1.38782687e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATU7JPHUHq70K16M8Ch+LPWeWCj0K16M8h0CyOecZ/jwK16M8fOUFPW2MsL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAom3+vdzwOjxq3249ica6PQpbt73BIio+2DNPPXps/z0K16M8ky6cPepX+7pfwUI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATU7JPHUHq70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAofiz1nlgo9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACHQLI55xn+PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfOUFPW2MsL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.02457347 -0.08351032 0.02 ]\n [ 0.0679303 0.03383484 0.02 ]\n [ 0.00033999 0.03101821 0.02 ]\n [ 0.03268956 -0.08620534 0.02 ]]",
45
+ "desired_goal": "[[-0.12423255 0.01140996 0.05831853]\n [ 0.09119899 -0.08952911 0.1661482 ]\n [ 0.05058655 0.12471862 0.02 ]\n [ 0.07626071 -0.0019176 0.19019078]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4573470e-02\n -8.3510317e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.7930296e-02\n 3.3834841e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.3998882e-04\n 3.1018211e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.2689556e-02\n -8.6205341e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": -8.000000000008001e-05,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0BzsWUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzs2fra/RFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BztgNutOmBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzsFj4HoovdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzuicc2itadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzvA+u/1xsdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BzvDVPN3W4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzvt8zAN5MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzuTOiWVu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzww4PwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzxUDB/I8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzx5Zq20AtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzwetRvWH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy6N4qwyJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzzeK+BYmtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz0RCgK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy25AhStOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1TXSSeRQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz12FFlTWHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz2dPi1iOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1CjFhodudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3j9YOlO5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4G3jMmngdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4qzw+dK/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3QRChN/OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5rlq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz6OrtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz60jcEeQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5aCHymQ9dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Bz7RqesgdPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz77h0hePadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz8d1/2Cd0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz7tN0vGp/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz9hMlC1JEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+J5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+ssNDtw8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz948hcJMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz/1eXzDoAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Am7voePrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BSrOqvNedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BFUkv9LpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0DGCUX531dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0D9YdQwbmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Em0E5hjOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ElKqXF98dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0GqwHJLdvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0HhHSWqtHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0IMkX1rZbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ICXeFcptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0J/jrAxi5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0KxliBoVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LbM5fdAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LUfgaWHDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0NXVx0dR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0OMs3AEdOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0O2exwAEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0PF27nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RNbHIZIhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0R7wc5sCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0SeOgg5imdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RrUZvUBodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ThRUFSsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ULAM2FWXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0UwibDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0T8WAPNFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0VzD1oQFtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Wiw/xDsudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0XFxjriVCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0We/7BO58dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Yas6q815dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ZEYuTRpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Zo3++/QCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Y1Um2LHddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0apFspG4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bQrQPZqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0by1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bBIqbz9TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0cz6rNnoQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dc5dWyTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0d9e2NNrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dMYbbUPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0e/ShJyyVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fna11GLDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0gKlyimEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fXcQAdXDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hLKGL1mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hzi2lVLjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0iX4AS39adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hj7el9BsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jYYzi0fHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kBNfw7T2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kikrPMSsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jvqUu+RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ljqbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mMiRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mvUmUnogdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0l86aLGaQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0nvkyULUkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0oZaSs8xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0o8IcBEKFdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 8334,
62
+ "n_steps": 3,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 0.96,
65
+ "ent_coef": 0.008,
66
+ "vf_coef": 0.01,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c81e714e8ca2d1b29c5e8c4a2a3a6073ea73b009062eabafbc89de9ea39a943b
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9349a71321dfdace3c994d48461ae4ecc38af2bf4b8bb61e838a5c472604247
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100008, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699952868773575229, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACnE0vjGLmD40Jjw+comLP5J9Wj8IKDw+DZRYQFIzh7+I3U/A2aDnv/5GgL48JTw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAG/K7P9bvx79Z6Y2/+SiQP0GX0D5Z6Y2/ZLGFv0SoC78EHni+YmN0viUNoL9Z6Y2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD3cmk+9KiUviboxb0+svy/8IiivwxEz78oFIC/CnE0vjGLmD40Jjw+qS98PCw3J73aKO68S3S4O3lLmjxTV6o9h4c/uuycF71oAdY6ifsgvyDQSb9EOzy/vRm7vgX+oD+5q/I4NfSTP3KJiz+SfVo/CCg8PgO4fjwLlie92JfwvOa3qzv4DZk8eg6qPS9q9bqlaxi9YquTOmFk6T7kGWW/YV4+vzCxxT6WFaE+o/Z3PKnBfb8NlFhAUjOHv4jdT8CldwpAH9EqQL4K2j9aIeRAaRFKwAAAIMGN0AQ+PBNYQAbkHz+0FwS/6NgjPaNwyb4YdhvAzSagP+yhOD606WQ/2aDnv/5GgL48JTw+j4d+PC45Jr1jaI1AHTyxO6cHmTx5Dqo96Gr1urRrGL2+57U6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.17621246 0.29793695 0.18373948]\n [ 1.090132 0.85347855 0.18374646]\n [ 3.3840363 -1.0562537 -3.2478962 ]\n [-1.8095962 -0.25054163 0.18373579]]", "desired_goal": "[[ 1.468326 -1.5620067 -1.1086837 ]\n [ 1.1262504 0.40740398 -1.1086837 ]\n [-1.044476 -0.5455363 -0.242302 ]\n [-0.23866037 -1.2504011 -1.1086837 ]]", "observation": "[[ 2.27977619e-01 -2.90351510e-01 -9.66341943e-02 -1.97418952e+00\n -1.26980400e+00 -1.61926413e+00 -1.00061512e+00 -1.76212460e-01\n 2.97936946e-01 1.83739483e-01 1.53922224e-02 -4.08241004e-02\n -2.90722139e-02 5.62909758e-03 1.88348163e-02 8.31743702e-02\n -7.30626693e-04 -3.70148867e-02 1.63273234e-03]\n [-6.28838122e-01 -7.88331985e-01 -7.35279322e-01 -3.65430743e-01\n 1.25775206e+00 1.15714451e-04 1.15589011e+00 1.09013200e+00\n 8.53478551e-01 1.83746457e-01 1.55468015e-02 -4.09145765e-02\n -2.93692797e-02 5.24042826e-03 1.86834186e-02 8.30354244e-02\n -1.87236618e-03 -3.72120328e-02 1.12662860e-03]\n [ 4.55843955e-01 -8.94926310e-01 -7.43627608e-01 3.86117458e-01\n 3.14617813e-01 1.51344864e-02 -9.91236269e-01 3.38403630e+00\n -1.05625367e+00 -3.24789619e+00 2.16355252e+00 2.66901374e+00\n 1.70345283e+00 7.12907124e+00 -3.15731263e+00 -1.00000000e+01\n 1.29701808e-01 3.37617397e+00 6.24573112e-01]\n [-5.15986681e-01 4.00017798e-02 -3.93437475e-01 -2.42908287e+00\n 1.25118411e+00 1.80305183e-01 8.94191027e-01 -1.80959618e+00\n -2.50541627e-01 1.83735788e-01 1.55352494e-02 -4.05818745e-02\n 4.41899252e+00 5.40877739e-03 1.86804067e-02 8.30354169e-02\n -1.87238771e-03 -3.72120887e-02 1.38782687e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATU7JPHUHq70K16M8Ch+LPWeWCj0K16M8h0CyOecZ/jwK16M8fOUFPW2MsL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAom3+vdzwOjxq3249ica6PQpbt73BIio+2DNPPXps/z0K16M8ky6cPepX+7pfwUI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAATU7JPHUHq70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAofiz1nlgo9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACHQLI55xn+PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfOUFPW2MsL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.02457347 -0.08351032 0.02 ]\n [ 0.0679303 0.03383484 0.02 ]\n [ 0.00033999 0.03101821 0.02 ]\n [ 0.03268956 -0.08620534 0.02 ]]", "desired_goal": "[[-0.12423255 0.01140996 0.05831853]\n [ 0.09119899 -0.08952911 0.1661482 ]\n [ 0.05058655 0.12471862 0.02 ]\n [ 0.07626071 -0.0019176 0.19019078]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4573470e-02\n -8.3510317e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.7930296e-02\n 3.3834841e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.3998882e-04\n 3.1018211e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.2689556e-02\n -8.6205341e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008001e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0BzsWUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzs2fra/RFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BztgNutOmBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzsFj4HoovdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzuicc2itadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzvA+u/1xsdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BzvDVPN3W4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzvt8zAN5MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzuTOiWVu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzww4PwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzxUDB/I8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzx5Zq20AtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzwetRvWH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy6N4qwyJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0BzzeK+BYmtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz0RCgK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bzy25AhStOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1TXSSeRQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz12FFlTWHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz2dPi1iOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz1CjFhodudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3j9YOlO5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4G3jMmngdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz4qzw+dK/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz3QRChN/OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5rlq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz6OrtE5QxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz60jcEeQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz5aCHymQ9dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0Bz7RqesgdPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz77h0hePadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz8d1/2Cd0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz7tN0vGp/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz9hMlC1JEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+J5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz+ssNDtw8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz948hcJMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Bz/1eXzDoAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Am7voePrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BSrOqvNedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0BFUkv9LpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0DGCUX531dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0D9YdQwbmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Em0E5hjOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ElKqXF98dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0GqwHJLdvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0HhHSWqtHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0IMkX1rZbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ICXeFcptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0J/jrAxi5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0KxliBoVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LbM5fdAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0LUfgaWHDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0NXVx0dR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0OMs3AEdOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0O2exwAEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0PF27nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RNbHIZIhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0R7wc5sCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0SeOgg5imdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0RrUZvUBodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ThRUFSsKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ULAM2FWXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0UwibDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0T8WAPNFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0VzD1oQFtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Wiw/xDsudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0XFxjriVCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0We/7BO58dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Yas6q815dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ZEYuTRpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Zo3++/QCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0Y1Um2LHddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0apFspG4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bQrQPZqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0by1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0bBIqbz9TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0cz6rNnoQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dc5dWyTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0d9e2NNrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0dMYbbUPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0e/ShJyyVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fna11GLDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0gKlyimEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0fXcQAdXDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hLKGL1mKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hzi2lVLjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0iX4AS39adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0hj7el9BsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jYYzi0fHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kBNfw7T2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0kikrPMSsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0jvqUu+RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0ljqbBoEkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mMiRnvlVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0mvUmUnogdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0l86aLGaQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0nvkyULUkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0oZaSs8xLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B0o8IcBEKFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8334, "n_steps": 3, "gamma": 0.95, "gae_lambda": 0.96, "ent_coef": 0.008, "vf_coef": 0.01, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (766 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T09:15:04.225322"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a20decc2d3b52a492a735994e5efbadc602370ea0353b1faa847e8cf3315838
3
+ size 3013