File size: 16,521 Bytes
6bdaaa8
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0e6eb40790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0e6eb398c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699957728664923534, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaoOVP3H6jL01wxk+XK9+PED1ED+Gwxk+Ku+Kv4pVcz79wBk+O+qrPUUamDzPxBk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXl+PP8gg27/kYIG/zoPMPoPPV78ugZU/YS8gPz6ouL5AQou/Xht0P3GQDz7NgMs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAQfl0+cdedP8v3VT+FVa+9U/fCvKLdhj9FiVO/aoOVP3H6jL01wxk+W3WePH7/WL3jRfi8uOMPu1t/K70rHYc9ysGWPIBPAr0qRY+8rn/qPmbIez89/qU+0D+RP1nosb/EG5s/1olTv1yvfjxA9RA/hsMZPhQ9nzwDYFm9UibivCVq67q7WCy9Kx2HPdbBljyGTwK9q4KKvBQfKj+cS7c7ZKavPba/rj6463A/XUdfP2IA+r4q74q/ilVzPv3AGT5PTqA81Y1ZvXqk97yDsR67TSQrvSsdhz3LwZY8gE8Cvblhj7x++b4+M2ZuP1MtYj8XTgI//YBUv9hwij+6iVO/O+qrPUUamDzPxBk+U3GePBcgWr0CuPm8iWLlupYkLL1Lx4Y9UU6gPFWw9LwUdo+8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1680729  -0.06883705  0.15015872]\n [ 0.01554474  0.5662422   0.15015993]\n [-1.0854237   0.237631    0.15015025]\n [ 0.08394285  0.01856721  0.15016483]]", "desired_goal": "[[ 1.1200979  -1.7119379  -1.0107694 ]\n [ 0.3994431  -0.8430101   1.1680048 ]\n [ 0.62572294 -0.3606586  -1.0879593 ]\n [ 0.9535426   0.14019944  1.5898682 ]]", "observation": "[[ 0.2163012   1.2331372   0.8358123  -0.08561233 -0.02379957  1.0536387\n  -0.8263133   1.1680729  -0.06883705  0.15015872  0.01934307 -0.05297803\n  -0.03030676 -0.00219558 -0.0418695   0.0659736   0.01840295 -0.0318141\n  -0.01748903]\n [ 0.45800537  0.9835266   0.3242053   1.1347599  -1.3899032   1.2117848\n  -0.82632196  0.01554474  0.5662422   0.15015993  0.0194383  -0.05307008\n  -0.02760616 -0.00179607 -0.04207681  0.0659736   0.01840298 -0.03181412\n  -0.01690801]\n [ 0.6645367   0.00559373  0.08576658  0.3413064   0.9410968   0.87218267\n  -0.48828417 -1.0854237   0.237631    0.15015025  0.01956859 -0.05311378\n  -0.0302298  -0.00242147 -0.04178267  0.0659736   0.01840295 -0.0318141\n  -0.01750265]\n [ 0.37299722  0.93124694  0.8835041   0.50900406 -0.8300932   1.0815687\n  -0.8263203   0.08394285  0.01856721  0.15016483  0.01934115 -0.05325326\n  -0.03048325 -0.00175007 -0.04202708  0.06580981  0.01956859 -0.02986924\n  -0.01751236]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUukHPUzTEbwK16M8GbLWPcIBID0K16M8oB7nPPx+y70K16M8YJmjvHc3Dj4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3u7ovXJJ8b0K16M8KKgsPSW2fb3NP8A9yb6nvbP+uLoK16M87rkYvlV3MT35WQg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUukHPUzTEbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABmy1j3CASA9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACgHuc8/H7LvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAYJmjvHc3Dj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.0331815  -0.00890047  0.02      ]\n [ 0.10483188  0.03906418  0.02      ]\n [ 0.02821285 -0.0993633   0.02      ]\n [-0.0199706   0.13888346  0.02      ]]", "desired_goal": "[[-0.11373685 -0.11781587  0.02      ]\n [ 0.04215255 -0.06194128  0.09387169]\n [-0.08190686 -0.0014114   0.02      ]\n [-0.14914677  0.04332669  0.03328893]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  3.3181496e-02\n  -8.9004748e-03  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  1.0483188e-01\n   3.9064176e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  2.8212845e-02\n  -9.9363297e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.9970596e-02\n   1.3888346e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CGJwXiR4hVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKwsCDEm6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLTj3mFJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKcHSF49pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLAo5xR2sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGL7Iq9XcQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMd1BdD6WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLmN5MURGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMKVbiZOSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGMLpsXSBtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNE3Sa3I/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNm9dNWU9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMu2uxKQJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNTkiD/VBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOKSK3uuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOrIYm9g4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNzNdJJ5FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOXwAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPQnVoYeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPzWOp84QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGO7nkDIRzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGO8/GEPDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPh7l7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQZRXwLE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQ61DSgGsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQEynk1dgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQqBBiTdMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRhCkXUH6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSDh3qzJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRM371qWUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRxJ/XoTxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSqkVN5+pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGTNfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSXDD0lJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGS9Aeq7yydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUIpVjqfOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGU2h5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUDBIFvAHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUwJfpljFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWAQLeANHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWzzI3irDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGV/yR0U48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWrthNM4+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGX5xI8QqadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYm1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGXzJg9eQddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYfCm/FisdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZuWTHKfWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGZwhKUVzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGacs1baAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZpgpBomHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGaUuEmICVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbnO4XoC/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcXluFYdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbl7wazeGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcU97ngYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdnsyBTXKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGeLocJdB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdVYMfA9FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGd5tUGVzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGe5AJswcpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfc3GXHBDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGenBmf5DadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfMq7ROUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgJ1ZDArQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgr2W6bvxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGf1lq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGga8jiXIEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhR2LYPGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhySKWLP2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGg7sVtXPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhhTaTOgQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiciaAnUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGi+GBWgezdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiIrJbMX8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGiKPgeii7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGivnEl3QldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGjtvze40/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkQcLBsQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGja5Etuk2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGjc5CngpCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGj9GuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGk2U0Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlWIl+mWMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkicUdq+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlC3qAz55dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGlEKziS7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGl8oTfzjFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmfusLfDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGludpZfUndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmShje9BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnMlLvkR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGns0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGm5mEoOQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnbGxUvPDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGncmnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoTpLVWjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGo04S6DoRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoBfZVXFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoka5wwTNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}