IlluminatiPudding commited on
Commit
6bdaaa8
1 Parent(s): 8277b55

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d7df99e6074bd99353d96fffe2bd562e9039be4c8681d52ef5efb2ca376ae1
3
+ size 124144
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0e6eb40790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f0e6eb398c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 200000,
23
+ "_total_timesteps": 200000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699957728664923534,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaoOVP3H6jL01wxk+XK9+PED1ED+Gwxk+Ku+Kv4pVcz79wBk+O+qrPUUamDzPxBk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXl+PP8gg27/kYIG/zoPMPoPPV78ugZU/YS8gPz6ouL5AQou/Xht0P3GQDz7NgMs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAQfl0+cdedP8v3VT+FVa+9U/fCvKLdhj9FiVO/aoOVP3H6jL01wxk+W3WePH7/WL3jRfi8uOMPu1t/K70rHYc9ysGWPIBPAr0qRY+8rn/qPmbIez89/qU+0D+RP1nosb/EG5s/1olTv1yvfjxA9RA/hsMZPhQ9nzwDYFm9UibivCVq67q7WCy9Kx2HPdbBljyGTwK9q4KKvBQfKj+cS7c7ZKavPba/rj6463A/XUdfP2IA+r4q74q/ilVzPv3AGT5PTqA81Y1ZvXqk97yDsR67TSQrvSsdhz3LwZY8gE8Cvblhj7x++b4+M2ZuP1MtYj8XTgI//YBUv9hwij+6iVO/O+qrPUUamDzPxBk+U3GePBcgWr0CuPm8iWLlupYkLL1Lx4Y9UU6gPFWw9LwUdo+8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.1680729 -0.06883705 0.15015872]\n [ 0.01554474 0.5662422 0.15015993]\n [-1.0854237 0.237631 0.15015025]\n [ 0.08394285 0.01856721 0.15016483]]",
34
+ "desired_goal": "[[ 1.1200979 -1.7119379 -1.0107694 ]\n [ 0.3994431 -0.8430101 1.1680048 ]\n [ 0.62572294 -0.3606586 -1.0879593 ]\n [ 0.9535426 0.14019944 1.5898682 ]]",
35
+ "observation": "[[ 0.2163012 1.2331372 0.8358123 -0.08561233 -0.02379957 1.0536387\n -0.8263133 1.1680729 -0.06883705 0.15015872 0.01934307 -0.05297803\n -0.03030676 -0.00219558 -0.0418695 0.0659736 0.01840295 -0.0318141\n -0.01748903]\n [ 0.45800537 0.9835266 0.3242053 1.1347599 -1.3899032 1.2117848\n -0.82632196 0.01554474 0.5662422 0.15015993 0.0194383 -0.05307008\n -0.02760616 -0.00179607 -0.04207681 0.0659736 0.01840298 -0.03181412\n -0.01690801]\n [ 0.6645367 0.00559373 0.08576658 0.3413064 0.9410968 0.87218267\n -0.48828417 -1.0854237 0.237631 0.15015025 0.01956859 -0.05311378\n -0.0302298 -0.00242147 -0.04178267 0.0659736 0.01840295 -0.0318141\n -0.01750265]\n [ 0.37299722 0.93124694 0.8835041 0.50900406 -0.8300932 1.0815687\n -0.8263203 0.08394285 0.01856721 0.15016483 0.01934115 -0.05325326\n -0.03048325 -0.00175007 -0.04202708 0.06580981 0.01956859 -0.02986924\n -0.01751236]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUukHPUzTEbwK16M8GbLWPcIBID0K16M8oB7nPPx+y70K16M8YJmjvHc3Dj4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3u7ovXJJ8b0K16M8KKgsPSW2fb3NP8A9yb6nvbP+uLoK16M87rkYvlV3MT35WQg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUukHPUzTEbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABmy1j3CASA9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACgHuc8/H7LvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAYJmjvHc3Dj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.0331815 -0.00890047 0.02 ]\n [ 0.10483188 0.03906418 0.02 ]\n [ 0.02821285 -0.0993633 0.02 ]\n [-0.0199706 0.13888346 0.02 ]]",
45
+ "desired_goal": "[[-0.11373685 -0.11781587 0.02 ]\n [ 0.04215255 -0.06194128 0.09387169]\n [-0.08190686 -0.0014114 0.02 ]\n [-0.14914677 0.04332669 0.03328893]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.3181496e-02\n -8.9004748e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0483188e-01\n 3.9064176e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.8212845e-02\n -9.9363297e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9970596e-02\n 1.3888346e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CGJwXiR4hVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKwsCDEm6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLTj3mFJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKcHSF49pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLAo5xR2sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGL7Iq9XcQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMd1BdD6WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLmN5MURGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMKVbiZOSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGMLpsXSBtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNE3Sa3I/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNm9dNWU9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMu2uxKQJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNTkiD/VBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOKSK3uuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOrIYm9g4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNzNdJJ5FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOXwAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPQnVoYeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPzWOp84QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGO7nkDIRzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGO8/GEPDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPh7l7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQZRXwLE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQ61DSgGsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQEynk1dgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQqBBiTdMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRhCkXUH6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSDh3qzJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRM371qWUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRxJ/XoTxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSqkVN5+pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGTNfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSXDD0lJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGS9Aeq7yydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUIpVjqfOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGU2h5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUDBIFvAHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUwJfpljFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWAQLeANHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWzzI3irDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGV/yR0U48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWrthNM4+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGX5xI8QqadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYm1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGXzJg9eQddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYfCm/FisdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZuWTHKfWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGZwhKUVzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGacs1baAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZpgpBomHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGaUuEmICVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbnO4XoC/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcXluFYdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbl7wazeGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcU97ngYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdnsyBTXKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGeLocJdB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdVYMfA9FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGd5tUGVzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGe5AJswcpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfc3GXHBDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGenBmf5DadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfMq7ROUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgJ1ZDArQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgr2W6bvxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGf1lq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGga8jiXIEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhR2LYPGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhySKWLP2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGg7sVtXPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhhTaTOgQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiciaAnUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGi+GBWgezdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiIrJbMX8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGiKPgeii7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGivnEl3QldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGjtvze40/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkQcLBsQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGja5Etuk2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGjc5CngpCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGj9GuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGk2U0Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlWIl+mWMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkicUdq+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlC3qAz55dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGlEKziS7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGl8oTfzjFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmfusLfDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGludpZfUndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmShje9BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnMlLvkR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGns0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGm5mEoOQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnbGxUvPDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGncmnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoTpLVWjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGo04S6DoRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoBfZVXFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoka5wwTNdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 10000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eaee983732728025687bc3f0fe5d0c75bcda020a7acd10b6fa3a8b35e487b59
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64a0dc6cca1fc7b00efc72f52b414d9ee38ff6fd4477fa1cd5f7f41d024e3cd5
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0e6eb40790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0e6eb398c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699957728664923534, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaoOVP3H6jL01wxk+XK9+PED1ED+Gwxk+Ku+Kv4pVcz79wBk+O+qrPUUamDzPxBk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXl+PP8gg27/kYIG/zoPMPoPPV78ugZU/YS8gPz6ouL5AQou/Xht0P3GQDz7NgMs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAQfl0+cdedP8v3VT+FVa+9U/fCvKLdhj9FiVO/aoOVP3H6jL01wxk+W3WePH7/WL3jRfi8uOMPu1t/K70rHYc9ysGWPIBPAr0qRY+8rn/qPmbIez89/qU+0D+RP1nosb/EG5s/1olTv1yvfjxA9RA/hsMZPhQ9nzwDYFm9UibivCVq67q7WCy9Kx2HPdbBljyGTwK9q4KKvBQfKj+cS7c7ZKavPba/rj6463A/XUdfP2IA+r4q74q/ilVzPv3AGT5PTqA81Y1ZvXqk97yDsR67TSQrvSsdhz3LwZY8gE8Cvblhj7x++b4+M2ZuP1MtYj8XTgI//YBUv9hwij+6iVO/O+qrPUUamDzPxBk+U3GePBcgWr0CuPm8iWLlupYkLL1Lx4Y9UU6gPFWw9LwUdo+8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1680729 -0.06883705 0.15015872]\n [ 0.01554474 0.5662422 0.15015993]\n [-1.0854237 0.237631 0.15015025]\n [ 0.08394285 0.01856721 0.15016483]]", "desired_goal": "[[ 1.1200979 -1.7119379 -1.0107694 ]\n [ 0.3994431 -0.8430101 1.1680048 ]\n [ 0.62572294 -0.3606586 -1.0879593 ]\n [ 0.9535426 0.14019944 1.5898682 ]]", "observation": "[[ 0.2163012 1.2331372 0.8358123 -0.08561233 -0.02379957 1.0536387\n -0.8263133 1.1680729 -0.06883705 0.15015872 0.01934307 -0.05297803\n -0.03030676 -0.00219558 -0.0418695 0.0659736 0.01840295 -0.0318141\n -0.01748903]\n [ 0.45800537 0.9835266 0.3242053 1.1347599 -1.3899032 1.2117848\n -0.82632196 0.01554474 0.5662422 0.15015993 0.0194383 -0.05307008\n -0.02760616 -0.00179607 -0.04207681 0.0659736 0.01840298 -0.03181412\n -0.01690801]\n [ 0.6645367 0.00559373 0.08576658 0.3413064 0.9410968 0.87218267\n -0.48828417 -1.0854237 0.237631 0.15015025 0.01956859 -0.05311378\n -0.0302298 -0.00242147 -0.04178267 0.0659736 0.01840295 -0.0318141\n -0.01750265]\n [ 0.37299722 0.93124694 0.8835041 0.50900406 -0.8300932 1.0815687\n -0.8263203 0.08394285 0.01856721 0.15016483 0.01934115 -0.05325326\n -0.03048325 -0.00175007 -0.04202708 0.06580981 0.01956859 -0.02986924\n -0.01751236]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUukHPUzTEbwK16M8GbLWPcIBID0K16M8oB7nPPx+y70K16M8YJmjvHc3Dj4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3u7ovXJJ8b0K16M8KKgsPSW2fb3NP8A9yb6nvbP+uLoK16M87rkYvlV3MT35WQg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUukHPUzTEbwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABmy1j3CASA9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACgHuc8/H7LvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAYJmjvHc3Dj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.0331815 -0.00890047 0.02 ]\n [ 0.10483188 0.03906418 0.02 ]\n [ 0.02821285 -0.0993633 0.02 ]\n [-0.0199706 0.13888346 0.02 ]]", "desired_goal": "[[-0.11373685 -0.11781587 0.02 ]\n [ 0.04215255 -0.06194128 0.09387169]\n [-0.08190686 -0.0014114 0.02 ]\n [-0.14914677 0.04332669 0.03328893]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.3181496e-02\n -8.9004748e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0483188e-01\n 3.9064176e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.8212845e-02\n -9.9363297e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9970596e-02\n 1.3888346e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CGJwXiR4hVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKwsCDEm6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLTj3mFJydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGKcHSF49pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLAo5xR2sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGL7Iq9XcQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMd1BdD6WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGLmN5MURGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMKVbiZOSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGMLpsXSBtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNE3Sa3I/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNm9dNWU9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGMu2uxKQJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNTkiD/VBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOKSK3uuzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOrIYm9g4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGNzNdJJ5FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGOXwAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPQnVoYeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPzWOp84QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGO7nkDIRzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGO8/GEPDpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGPh7l7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQZRXwLE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQ61DSgGsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQEynk1dgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGQqBBiTdMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRhCkXUH6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSDh3qzJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRM371qWUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGRxJ/XoTxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSqkVN5+pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGTNfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGSXDD0lJIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGS9Aeq7yydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUIpVjqfOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGU2h5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUDBIFvAHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGUwJfpljFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWAQLeANHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWzzI3irDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGV/yR0U48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGWrthNM4+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGX5xI8QqadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYm1uzhP1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGXzJg9eQddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGYfCm/FisdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZuWTHKfWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGZwhKUVzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGacs1baAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGZpgpBomHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGaUuEmICVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbnO4XoC/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcXluFYdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGbl7wazeGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGcU97ngYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdnsyBTXKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGeLocJdB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGdVYMfA9FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGd5tUGVzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGe5AJswcpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfc3GXHBDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGenBmf5DadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGfMq7ROUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgJ1ZDArQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGgr2W6bvxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGf1lq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGga8jiXIEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhR2LYPGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhySKWLP2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGg7sVtXPrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGhhTaTOgQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiciaAnUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGi+GBWgezdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGiIrJbMX8dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGiKPgeii7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGivnEl3QldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGjtvze40/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkQcLBsQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGja5Etuk2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGjc5CngpCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGj9GuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGk2U0Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlWIl+mWMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGkicUdq+KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGlC3qAz55dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGlEKziS7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGl8oTfzjFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmfusLfDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGludpZfUndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGmShje9BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnMlLvkR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGns0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGm5mEoOQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGnbGxUvPDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CGncmnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoTpLVWjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGo04S6DoRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoBfZVXFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CGoka5wwTNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (879 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T10:48:52.497615"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c6ae674c2dc05d7e7bb9babdd377b90c5a1a8936ce37609f5808d301e95a41
3
+ size 3013