|
--- |
|
language: es |
|
tags: |
|
- biomedical |
|
- clinical |
|
- eHR |
|
- spanish |
|
- roberta-large-bne |
|
license: apache-2.0 |
|
datasets: |
|
- "PlanTL-GOB-ES/cantemist-ner" |
|
metrics: |
|
- f1 |
|
|
|
model-index: |
|
- name: IIC/roberta-large-bne-cantemist |
|
results: |
|
- task: |
|
type: token-classification |
|
dataset: |
|
name: cantemist-ner |
|
type: PlanTL-GOB-ES/cantemist-ner |
|
metrics: |
|
- name: f1 |
|
type: f1 |
|
value: 0.902 |
|
widget: |
|
- text: "El diagnóstico definitivo de nuestro paciente fue de un Adenocarcinoma de pulmón cT2a cN3 cM1a Estadio IV (por una única lesión pulmonar contralateral) PD-L1 90%, EGFR negativo, ALK negativo y ROS-1 negativo." |
|
- text: "Durante el ingreso se realiza una TC, observándose un nódulo pulmonar en el LII y una masa renal derecha indeterminada. Se realiza punción biopsia del nódulo pulmonar, con hallazgos altamente sospechosos de carcinoma." |
|
- text: "Trombosis paraneoplásica con sospecha de hepatocarcinoma por imagen, sobre hígado cirrótico, en paciente con índice Child-Pugh B." |
|
--- |
|
|
|
|
|
# roberta-large-bne-cantemist |
|
|
|
This model is a finetuned version of roberta-large-bne for the cantemist dataset used in a benchmark in the paper `A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks`. The model has a F1 of 0.902 |
|
|
|
Please refer to the [original publication](https://doi.org/10.1093/jamia/ocae054) for more information. |
|
|
|
## Parameters used |
|
|
|
| parameter | Value | |
|
|-------------------------|:-----:| |
|
| batch size | 16 | |
|
| learning rate | 1e05 | |
|
| classifier dropout | 0.1 | |
|
| warmup ratio | 0 | |
|
| warmup steps | 0 | |
|
| weight decay | 0 | |
|
| optimizer | AdamW | |
|
| epochs | 10 | |
|
| early stopping patience | 3 | |
|
|
|
|
|
## BibTeX entry and citation info |
|
|
|
```bibtext |
|
@article{10.1093/jamia/ocae054, |
|
author = {García Subies, Guillem and Barbero Jiménez, Álvaro and Martínez Fernández, Paloma}, |
|
title = {A comparative analysis of Spanish Clinical encoder-based models on NER and classification tasks}, |
|
journal = {Journal of the American Medical Informatics Association}, |
|
volume = {31}, |
|
number = {9}, |
|
pages = {2137-2146}, |
|
year = {2024}, |
|
month = {03}, |
|
issn = {1527-974X}, |
|
doi = {10.1093/jamia/ocae054}, |
|
url = {https://doi.org/10.1093/jamia/ocae054}, |
|
} |
|
``` |
|
|
|
|