|
--- |
|
language: |
|
- zh |
|
|
|
license: apache-2.0 |
|
|
|
tags: |
|
- bert |
|
|
|
inference: true |
|
|
|
widget: |
|
- text: "生活的真谛是[MASK]。" |
|
--- |
|
# Erlangshen-Deberta-XLarge-710M-Chinese,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) |
|
|
|
The 710 million parameter deberta-V2 base model, using 180G Chinese data, 24 A100(40G) training for 21 days,which is a encoder-only transformer structure. Consumed totally 700M samples. Still training... |
|
|
|
## Task Description |
|
|
|
Erlangshen-Deberta-XLarge-710M-Chinese is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248) |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline |
|
import torch |
|
|
|
tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese', use_fast=false) |
|
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese') |
|
text = '生活的真谛是[MASK]。' |
|
fillmask_pipe = FillMaskPipeline(model, tokenizer, device=-1) |
|
print(fillmask_pipe(text, top_k=10)) |
|
``` |
|
|
|
## Finetune |
|
|
|
We present the dev results on some tasks. |
|
|
|
| Model | AFQMC|TNEWS1.1|IFLYTEK|OCNLI | CMNLI | |
|
| ---------------------------------- | ----- | ------ | ------ | ------ | ------ | |
|
| RoBERTa-Large | 0.7488|0.5879|0.6152|0.777 | 0.814 | |
|
| **Erlangshen-Deberta-XLarge-710M-Chinese** | 0.7549|0.5873|0.6177|0.8012|0.8389| |
|
|
|
## Citation |
|
|
|
If you find the resource is useful, please cite the following website in your paper. |
|
|
|
```html |
|
@misc{Fengshenbang-LM, |
|
title={Fengshenbang-LM}, |
|
author={IDEA-CCNL}, |
|
year={2022}, |
|
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, |
|
} |
|
``` |
|
|