Hythcliff's picture
Update README.md
efa56bc verified
metadata
library_name: transformers
license: apache-2.0
base_model:
  - google-bert/bert-base-uncased
pipeline_tag: text-classification

Model Card for Model ID

Model Details

Model Description

This model was fine-tuned on addresses from Canada open data portal to parse Canadian addresses into ["B-STREET_NO", "I-STREET_NO", "B-STREET_NAME", "I-STREET_NAME", "B-STREET_TYPE", "I-STREET_TYPE", "B-STREET_DIR","I-STREET_DIR", "B-CITY", "I-CITY"] The results with the same tag need to be concatenated to provide meaningful output; please see section "How to Get Started with the Model" for inference example.

  • Developed by: [Juntao Zhang]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [BERT-based token classification model]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [bert-base-uncased]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[This model can be used for token classification tasks, such as named entity recognition (NER) or address token classification. ]

Downstream Use [optional]

[address matching, address auto-correction etc.]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[

import torch
from transformers import pipeline
import os
import json

class GeoLLMBertInference:
    def __init__(self, config_path='config.json'):
        with open(config_path, 'r') as config_file:
            config = json.load(config_file)
        
        self.project_path = config['project_path']
        self.tokenizer_path = os.path.join(self.project_path, config['tokenizer_path'])
        self.model_path = os.path.join(self.project_path, config['model_path'])

        # Check if a GPU is available and set the device accordingly
        self.device = 0 if torch.cuda.is_available() else -1
 
        self.ner_pipeline = pipeline("ner", model=self.model_path, tokenizer=self.tokenizer_path, device=self.device)
        self.result = None
        self.concatenate_result = None

    def get_ner_result(self, address):
        self.result = self.ner_pipeline(address.upper())
        return self.result

    def concatenate_entities(self):
        if self.result is None:
            raise ValueError("NER result is not available. Please run get_ner_result first.")
        
        concatenated_result = {}
        for entity in self.result:
            tag = entity['entity']
            word = entity['word'].replace('##', '').replace(',', '')
            if tag not in concatenated_result:
                concatenated_result[tag] = word.upper()
            else:
                concatenated_result[tag] += '' + word.upper()
        
        self.concatenate_result = concatenated_result
        return self.concatenate_result

    def get_json_result(self):
        if self.concatenate_result is None:
            raise ValueError("Concatenated result is not available. Please run concatenate_entities first.")
        
        return json.dumps(self.concatenate_result, indent=4)

# Example Usage
if __name__ == "__main__":
    geo_llm = GeoLLMBertInference('code/geo_llm/config.json')
    address = "16 ChSeAStREtST.CATHARINE"
    result = geo_llm.get_ner_result(address)
    print(result)

    concatenate_result = geo_llm.concatenate_entities()
    print(concatenate_result)

    # Get the concatenated result in JSON format
    json_result = geo_llm.get_json_result()
    data = json.loads(json_result)


    # Print the JSON string
    print(json_result)

]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]