Hunzla's picture
update model card README.md
474739d
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-urdu-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.4193523366298235

wav2vec2-large-xls-r-300m-urdu-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.4194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
6.1372 3.09 400 inf 0.8798
0.8691 6.18 800 inf 0.5099
0.4049 9.27 1200 inf 0.4904
0.2474 12.36 1600 inf 0.4523
0.1633 15.44 2000 inf 0.4285
0.1164 18.53 2400 inf 0.4194

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 1.18.3
  • Tokenizers 0.13.3