Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

chat_template: llama3
rl: dpo
datasets:
  - path: HumanLLMs/humanish-dpo-project
    type: llama3.prompt_pairs
    chat_template: llama3

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./humanish-llama3-8b-instruct

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 4
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: Humanish-DPO
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

hub_model_id: HumanLLMs/Humanish-LLama3.1-8B-Instruct

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

save_safetensors: true

Humanish-LLama3.1-8B-Instruct

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 341

Training results

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 22.38
IFEval (0-Shot) 64.98
BBH (3-Shot) 28.01
MATH Lvl 5 (4-Shot) 8.46
GPQA (0-shot) 0.78
MuSR (0-shot) 2.00
MMLU-PRO (5-shot) 30.02
Downloads last month
74
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for HumanLLMs/Human-Like-LLama3-8B-Instruct

Finetuned
(488)
this model
Quantizations
3 models

Dataset used to train HumanLLMs/Human-Like-LLama3-8B-Instruct

Collection including HumanLLMs/Human-Like-LLama3-8B-Instruct

Evaluation results