metadata
license: mit
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
base_model: openai-community/gpt2-large
metrics:
- accuracy
model-index:
- name: >-
RM-HH-Human_helpful_human_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse
results: []
RM-HH-Human_helpful_human_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse
This model is a fine-tuned version of openai-community/gpt2-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6036
- Accuracy: 0.6751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7205 | 0.03 | 250 | 0.7030 | 0.5251 |
0.6845 | 0.06 | 500 | 0.6752 | 0.5739 |
0.6715 | 0.08 | 750 | 0.6636 | 0.5934 |
0.6632 | 0.11 | 1000 | 0.6542 | 0.6102 |
0.6432 | 0.14 | 1250 | 0.6492 | 0.6125 |
0.635 | 0.17 | 1500 | 0.6462 | 0.6200 |
0.6708 | 0.19 | 1750 | 0.6413 | 0.6240 |
0.6565 | 0.22 | 2000 | 0.6394 | 0.6285 |
0.6194 | 0.25 | 2250 | 0.6355 | 0.6315 |
0.6405 | 0.28 | 2500 | 0.6326 | 0.6380 |
0.6431 | 0.31 | 2750 | 0.6285 | 0.6428 |
0.6526 | 0.33 | 3000 | 0.6254 | 0.6415 |
0.639 | 0.36 | 3250 | 0.6246 | 0.6433 |
0.621 | 0.39 | 3500 | 0.6217 | 0.6501 |
0.6305 | 0.42 | 3750 | 0.6200 | 0.6488 |
0.6146 | 0.45 | 4000 | 0.6194 | 0.6501 |
0.6382 | 0.47 | 4250 | 0.6166 | 0.6558 |
0.6211 | 0.5 | 4500 | 0.6143 | 0.6606 |
0.6141 | 0.53 | 4750 | 0.6135 | 0.6601 |
0.6272 | 0.56 | 5000 | 0.6119 | 0.6591 |
0.6242 | 0.58 | 5250 | 0.6103 | 0.6608 |
0.6202 | 0.61 | 5500 | 0.6087 | 0.6658 |
0.6205 | 0.64 | 5750 | 0.6080 | 0.6666 |
0.6268 | 0.67 | 6000 | 0.6069 | 0.6663 |
0.6017 | 0.7 | 6250 | 0.6064 | 0.6638 |
0.5942 | 0.72 | 6500 | 0.6060 | 0.6656 |
0.6186 | 0.75 | 6750 | 0.6053 | 0.6668 |
0.6316 | 0.78 | 7000 | 0.6040 | 0.6688 |
0.6031 | 0.81 | 7250 | 0.6039 | 0.6738 |
0.6143 | 0.84 | 7500 | 0.6021 | 0.6703 |
0.6217 | 0.86 | 7750 | 0.6020 | 0.6759 |
0.6099 | 0.89 | 8000 | 0.6017 | 0.6754 |
0.5951 | 0.92 | 8250 | 0.6010 | 0.6748 |
0.603 | 0.95 | 8500 | 0.6005 | 0.6721 |
0.6098 | 0.97 | 8750 | 0.6005 | 0.6769 |
0.6222 | 1.0 | 9000 | 0.5991 | 0.6741 |
0.6005 | 1.03 | 9250 | 0.5991 | 0.6743 |
0.5972 | 1.06 | 9500 | 0.5998 | 0.6706 |
0.582 | 1.09 | 9750 | 0.6043 | 0.6691 |
0.6004 | 1.11 | 10000 | 0.6187 | 0.6711 |
0.5985 | 1.14 | 10250 | 0.6195 | 0.6663 |
0.6206 | 1.17 | 10500 | 0.6122 | 0.6693 |
0.6216 | 1.2 | 10750 | 0.6069 | 0.6741 |
0.6091 | 1.22 | 11000 | 0.6236 | 0.6691 |
0.5863 | 1.25 | 11250 | 0.6209 | 0.6713 |
0.641 | 1.28 | 11500 | 0.6184 | 0.6698 |
0.6144 | 1.31 | 11750 | 0.6051 | 0.6713 |
0.6527 | 1.34 | 12000 | 0.6067 | 0.6703 |
0.6059 | 1.36 | 12250 | 0.6048 | 0.6711 |
0.6138 | 1.39 | 12500 | 0.6015 | 0.6741 |
0.6376 | 1.42 | 12750 | 0.6002 | 0.6726 |
0.6273 | 1.45 | 13000 | 0.5989 | 0.6721 |
0.6028 | 1.48 | 13250 | 0.6011 | 0.6713 |
0.6116 | 1.5 | 13500 | 0.5999 | 0.6723 |
0.6201 | 1.53 | 13750 | 0.5990 | 0.6733 |
0.606 | 1.56 | 14000 | 0.6024 | 0.6733 |
0.5985 | 1.59 | 14250 | 0.6079 | 0.6716 |
0.664 | 1.61 | 14500 | 0.6019 | 0.6748 |
0.5859 | 1.64 | 14750 | 0.6039 | 0.6743 |
0.6231 | 1.67 | 15000 | 0.6002 | 0.6733 |
0.5984 | 1.7 | 15250 | 0.6020 | 0.6741 |
0.602 | 1.73 | 15500 | 0.6037 | 0.6741 |
0.5817 | 1.75 | 15750 | 0.6031 | 0.6748 |
0.6128 | 1.78 | 16000 | 0.6040 | 0.6743 |
0.6415 | 1.81 | 16250 | 0.6047 | 0.6748 |
0.6084 | 1.84 | 16500 | 0.6041 | 0.6743 |
0.6103 | 1.87 | 16750 | 0.6040 | 0.6746 |
0.6289 | 1.89 | 17000 | 0.6033 | 0.6746 |
0.5948 | 1.92 | 17250 | 0.6030 | 0.6759 |
0.5655 | 1.95 | 17500 | 0.6033 | 0.6748 |
0.6125 | 1.98 | 17750 | 0.6036 | 0.6751 |
Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2