Holarissun's picture
End of training
9ceb3ed verified
metadata
license: mit
library_name: peft
tags:
  - trl
  - reward-trainer
  - generated_from_trainer
base_model: openai-community/gpt2-large
metrics:
  - accuracy
model-index:
  - name: >-
      RM-HH-Human_helpful_human_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse
    results: []

RM-HH-Human_helpful_human_loraR64_40000_gpt2-large_shuffleTrue_extractchosenFalse

This model is a fine-tuned version of openai-community/gpt2-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6036
  • Accuracy: 0.6751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.41e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7205 0.03 250 0.7030 0.5251
0.6845 0.06 500 0.6752 0.5739
0.6715 0.08 750 0.6636 0.5934
0.6632 0.11 1000 0.6542 0.6102
0.6432 0.14 1250 0.6492 0.6125
0.635 0.17 1500 0.6462 0.6200
0.6708 0.19 1750 0.6413 0.6240
0.6565 0.22 2000 0.6394 0.6285
0.6194 0.25 2250 0.6355 0.6315
0.6405 0.28 2500 0.6326 0.6380
0.6431 0.31 2750 0.6285 0.6428
0.6526 0.33 3000 0.6254 0.6415
0.639 0.36 3250 0.6246 0.6433
0.621 0.39 3500 0.6217 0.6501
0.6305 0.42 3750 0.6200 0.6488
0.6146 0.45 4000 0.6194 0.6501
0.6382 0.47 4250 0.6166 0.6558
0.6211 0.5 4500 0.6143 0.6606
0.6141 0.53 4750 0.6135 0.6601
0.6272 0.56 5000 0.6119 0.6591
0.6242 0.58 5250 0.6103 0.6608
0.6202 0.61 5500 0.6087 0.6658
0.6205 0.64 5750 0.6080 0.6666
0.6268 0.67 6000 0.6069 0.6663
0.6017 0.7 6250 0.6064 0.6638
0.5942 0.72 6500 0.6060 0.6656
0.6186 0.75 6750 0.6053 0.6668
0.6316 0.78 7000 0.6040 0.6688
0.6031 0.81 7250 0.6039 0.6738
0.6143 0.84 7500 0.6021 0.6703
0.6217 0.86 7750 0.6020 0.6759
0.6099 0.89 8000 0.6017 0.6754
0.5951 0.92 8250 0.6010 0.6748
0.603 0.95 8500 0.6005 0.6721
0.6098 0.97 8750 0.6005 0.6769
0.6222 1.0 9000 0.5991 0.6741
0.6005 1.03 9250 0.5991 0.6743
0.5972 1.06 9500 0.5998 0.6706
0.582 1.09 9750 0.6043 0.6691
0.6004 1.11 10000 0.6187 0.6711
0.5985 1.14 10250 0.6195 0.6663
0.6206 1.17 10500 0.6122 0.6693
0.6216 1.2 10750 0.6069 0.6741
0.6091 1.22 11000 0.6236 0.6691
0.5863 1.25 11250 0.6209 0.6713
0.641 1.28 11500 0.6184 0.6698
0.6144 1.31 11750 0.6051 0.6713
0.6527 1.34 12000 0.6067 0.6703
0.6059 1.36 12250 0.6048 0.6711
0.6138 1.39 12500 0.6015 0.6741
0.6376 1.42 12750 0.6002 0.6726
0.6273 1.45 13000 0.5989 0.6721
0.6028 1.48 13250 0.6011 0.6713
0.6116 1.5 13500 0.5999 0.6723
0.6201 1.53 13750 0.5990 0.6733
0.606 1.56 14000 0.6024 0.6733
0.5985 1.59 14250 0.6079 0.6716
0.664 1.61 14500 0.6019 0.6748
0.5859 1.64 14750 0.6039 0.6743
0.6231 1.67 15000 0.6002 0.6733
0.5984 1.7 15250 0.6020 0.6741
0.602 1.73 15500 0.6037 0.6741
0.5817 1.75 15750 0.6031 0.6748
0.6128 1.78 16000 0.6040 0.6743
0.6415 1.81 16250 0.6047 0.6748
0.6084 1.84 16500 0.6041 0.6743
0.6103 1.87 16750 0.6040 0.6746
0.6289 1.89 17000 0.6033 0.6746
0.5948 1.92 17250 0.6030 0.6759
0.5655 1.95 17500 0.6033 0.6748
0.6125 1.98 17750 0.6036 0.6751

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2