metadata
license: gemma
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
base_model: google/gemma-2b
metrics:
- accuracy
model-index:
- name: RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue
results: []
RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue
This model is a fine-tuned version of google/gemma-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5277
- Accuracy: 0.7168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8315 | 0.04 | 250 | 0.7587 | 0.5337 |
0.7136 | 0.08 | 500 | 0.6394 | 0.6303 |
0.6091 | 0.13 | 750 | 0.6058 | 0.6544 |
0.6005 | 0.17 | 1000 | 0.5916 | 0.6634 |
0.5844 | 0.21 | 1250 | 0.5839 | 0.6743 |
0.5823 | 0.25 | 1500 | 0.5729 | 0.6796 |
0.5845 | 0.29 | 1750 | 0.5629 | 0.6815 |
0.5726 | 0.33 | 2000 | 0.5599 | 0.6833 |
0.5564 | 0.38 | 2250 | 0.5675 | 0.6886 |
0.5681 | 0.42 | 2500 | 0.5550 | 0.6912 |
0.5713 | 0.46 | 2750 | 0.5367 | 0.6897 |
0.5403 | 0.5 | 3000 | 0.5392 | 0.6980 |
0.5299 | 0.54 | 3250 | 0.5502 | 0.7029 |
0.5397 | 0.59 | 3500 | 0.5411 | 0.7025 |
0.5629 | 0.63 | 3750 | 0.5377 | 0.7048 |
0.5307 | 0.67 | 4000 | 0.5290 | 0.7119 |
0.5154 | 0.71 | 4250 | 0.5322 | 0.7104 |
0.5307 | 0.75 | 4500 | 0.5363 | 0.7123 |
0.5414 | 0.79 | 4750 | 0.5320 | 0.7161 |
0.5444 | 0.84 | 5000 | 0.5269 | 0.7194 |
0.4831 | 0.88 | 5250 | 0.5325 | 0.7183 |
0.528 | 0.92 | 5500 | 0.5281 | 0.7187 |
0.527 | 0.96 | 5750 | 0.5277 | 0.7168 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2