Address Standardization and Correction Model

This model is t5-base fine-tuned to transform incorrect and non-standard addresses into standardized addresses. , primarily trained for US addresses.

How to use the model

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model = AutoModelForSeq2SeqLM.from_pretrained("Hnabil/t5-address-standardizer")
tokenizer = AutoTokenizer.from_pretrained("Hnabil/t5-address-standardizer")

inputs = tokenizer(
  "220, soyth rhodeisland aveune, mason city, iowa, 50401, us",
  return_tensors="pt"
)
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# ['220, s rhode island ave, mason city, ia, 50401, us']

Training data

The model has been trained on data from openaddresses.io.

Downloads last month
134
Safetensors
Model size
223M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hnabil/t5-address-standardizer

Quantizations
2 models

Space using Hnabil/t5-address-standardizer 1