NLP_Capstone / README.md
HerbertAIHug's picture
End of training
93fdc79
metadata
base_model: huawei-noah/TinyBERT_General_4L_312D
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: NLP_Capstone
    results: []

NLP_Capstone

This model is a fine-tuned version of huawei-noah/TinyBERT_General_4L_312D on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3176
  • Accuracy: 0.8671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5286 0.2 500 0.4169 0.8251
0.4299 0.4 1000 0.4137 0.8332
0.3856 0.6 1500 0.3714 0.8512
0.3692 0.8 2000 0.3176 0.8671
0.3604 1.0 2500 0.3869 0.8635
0.3457 1.2 3000 0.4126 0.8631
0.3291 1.41 3500 0.4272 0.8675
0.3481 1.61 4000 0.3754 0.8775
0.3253 1.81 4500 0.4293 0.8649
0.3306 2.01 5000 0.3807 0.8789
0.2849 2.21 5500 0.4291 0.8803
0.2824 2.41 6000 0.4058 0.8797
0.279 2.61 6500 0.4521 0.8761
0.2944 2.81 7000 0.4986 0.8747
0.3347 3.01 7500 0.4364 0.8815
0.2622 3.21 8000 0.5368 0.8703
0.2494 3.41 8500 0.4795 0.8854
0.2645 3.61 9000 0.4795 0.8864
0.243 3.81 9500 0.4570 0.8874
0.2399 4.01 10000 0.5219 0.8795
0.2103 4.22 10500 0.5325 0.8775
0.2196 4.42 11000 0.5629 0.8729
0.2494 4.62 11500 0.5087 0.8826
0.1968 4.82 12000 0.5332 0.8779

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1