pred_timeperiod / README.md
Herais's picture
Update README.md
fb5548d
|
raw
history blame
2.13 kB
---
language:
- zh
tags:
- classification
license: apache-2.0
datasets:
- Custom
metrics:
- rouge
---
This model predicts the time period given a synopsis of about 200 Chinese characters.
The model is trained on TV and Movie datasets and takes simplified Chinese as input.
We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint.
#### Sample Usage
from transformers import BertTokenizer, BertForSequenceClassification
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = "Herais/pred_timeperiod"
tokenizer = BertTokenizer.from_pretrained(checkpoint,
problem_type="single_label_classification")
model = BertForSequenceClassification.from_pretrained(checkpoint).to(device)
label2id_timeperiod = {'古代': 0, '当代': 1, '现代': 2, '近代': 3, '重大': 4}
id2label_timeperiod = {0: '古代', 1: '当代', 2: '现代', 3: '近代', 4: '重大'}
synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\
他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\
成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\
为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\
也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\
继续为检察事业贡献自己的青春。 """
inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt')
model.eval()
outputs = model(**input)
label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy()
labels_pred = [id2label_timeperiod[label] for label in labels_pred]
print(labels_pred)
# ['当代']
Citation
{}