|
--- |
|
language: |
|
- zh |
|
tags: |
|
- classification |
|
license: apache-2.0 |
|
datasets: |
|
- Custom |
|
metrics: |
|
- rouge |
|
--- |
|
This model predicts the time period given a synopsis of about 200 Chinese characters. |
|
The model is trained on TV and Movie datasets and takes simplified Chinese as input. |
|
|
|
We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint. |
|
|
|
#### Sample Usage |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
checkpoint = "Herais/pred_timeperiod" |
|
tokenizer = BertTokenizer.from_pretrained(checkpoint, |
|
problem_type="single_label_classification") |
|
model = BertForSequenceClassification.from_pretrained(checkpoint).to(device) |
|
|
|
label2id_timeperiod = {'古代': 0, '当代': 1, '现代': 2, '近代': 3, '重大': 4} |
|
id2label_timeperiod = {0: '古代', 1: '当代', 2: '现代', 3: '近代', 4: '重大'} |
|
|
|
synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\ |
|
他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\ |
|
成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\ |
|
为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\ |
|
也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\ |
|
继续为检察事业贡献自己的青春。 """ |
|
|
|
inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt') |
|
model.eval() |
|
outputs = model(**input) |
|
|
|
label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy() |
|
labels_pred = [id2label_timeperiod[label] for label in labels_pred] |
|
|
|
print(labels_pred) |
|
# ['当代'] |
|
|
|
Citation |
|
{} |