test
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6886
- Accuracy: 0.8143
- F1: [0.92816572 0.56028369 0.1 0.2633452 ]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 37 | 0.4891 | 0.8235 | [0.91702786 0.33333333 0. 0.10837438] |
No log | 2.0 | 74 | 0.4762 | 0.8321 | [0.93139159 0.48466258 0. 0.22857143] |
No log | 3.0 | 111 | 0.5084 | 0.8208 | [0.92995725 0.44887781 0. 0.19266055] |
No log | 4.0 | 148 | 0.5519 | 0.8105 | [0.92421691 0.44444444 0.06557377 0.30769231] |
No log | 5.0 | 185 | 0.5805 | 0.8294 | [0.93531353 0.52336449 0.09345794 0.27131783] |
No log | 6.0 | 222 | 0.6778 | 0.7955 | [0.91344509 0.55305466 0.15463918 0.29166667] |
No log | 7.0 | 259 | 0.6407 | 0.8213 | [0.93298292 0.51383399 0.10191083 0.2519084 ] |
No log | 8.0 | 296 | 0.6639 | 0.8272 | [0.9326288 0.55052265 0.18181818 0.26271186] |
No log | 9.0 | 333 | 0.6863 | 0.8192 | [0.93071286 0.55830389 0.11042945 0.2761194 ] |
No log | 10.0 | 370 | 0.6886 | 0.8143 | [0.92816572 0.56028369 0.1 0.2633452 ] |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 36
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.