Hebrew Language Model

State-of-the-art RoBERTa language model for Hebrew.

How to use

from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('HeNLP/HeRo')
model = AutoModelForMaskedLM.from_pretrained('HeNLP/HeRo'

# Tokenization Example:
# Tokenizing
tokenized_string = tokenizer('שלום לכולם')

# Decoding 
decoded_string = tokenizer.decode(tokenized_string ['input_ids'], skip_special_tokens=True)

Citing

If you use HeRo in your research, please cite HeRo: RoBERTa and Longformer Hebrew Language Models.

@article{shalumov2023hero,
      title={HeRo: RoBERTa and Longformer Hebrew Language Models}, 
      author={Vitaly Shalumov and Harel Haskey},
      year={2023},
      journal={arXiv:2304.11077},
}
Downloads last month
109
Safetensors
Model size
125M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HeNLP/HeRo

Finetunes
1 model

Dataset used to train HeNLP/HeRo