|
--- |
|
license: apache-2.0 |
|
tags: |
|
- multilingual model |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-multilingual-xlsum-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-multilingual-xlsum-new |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the Xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7436 |
|
- Rouge1: 9.3908 |
|
- Rouge2: 2.5077 |
|
- RougeL: 7.8615 |
|
- Rougelsum: 7.8745 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 3.8301 | 1.0 | 3375 | 2.8828 | 8.1957 | 1.9439 | 6.8031 | 6.8206 | |
|
| 3.4032 | 2.0 | 6750 | 2.8049 | 8.9533 | 2.2919 | 7.4137 | 7.4244 | |
|
| 3.3697 | 3.0 | 10125 | 2.7743 | 9.3366 | 2.4531 | 7.8129 | 7.8276 | |
|
| 3.3862 | 4.0 | 13500 | 2.7500 | 9.4377 | 2.542 | 7.9123 | 7.9268 | |
|
| 3.1704 | 5.0 | 16875 | 2.7436 | 9.3908 | 2.5077 | 7.8615 | 7.8745 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.1 |
|
- Tokenizers 0.12.1 |
|
|